Skip to main content

Study on synthesis of ZnO nanorods and its UV-blocking properties on cotton fabrics coated with the ZnO quantum dot

Abstract

Crystalline ZnO quantum dots have been synthesized by hydrolysis of zinc acetate dihydrate with lithium hydroxide in ethanolic solution. The effects of different synthesis parameters on the structure and optical properties of ZnO QDs were investigated in detail. The UV–Vis optical spectra showed that the particle size is highly dependent on the precursor concentration and temperature, while the luminescence properties of as-prepared ZnO QDs depend on the both size and surface properties of particles. UV-blocking cotton fabrics were prepared by coated with ZnO nanorods. The preparation process was conducted in mild conditions, which involved the dip-coating ZnO QDs as crystal seeds, the dissolution–recrystallization of ZnO nanorods, and the hydrothermal growth of ZnO nanorods. The ZnO nanorods covered the cotton fibers uniformly and densely. The treated cotton textile exhibited an excellent UV-blocking property with an ultrahigh UPF value of 118.12.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  • Abd El-Hady MM, Farouk A, Sharaf S (2013) Flame retardancy and UV protection of cotton based fabrics using nano ZnO and polycarboxylic acids. Carbohydr Polym 92:400–406

    Article  Google Scholar 

  • Abramov OV, Gedanken A, Koltypin Y, Perkas N, Perelshtein I, Joyce E, Mason TJ (2009) Pilot scale sonochemical coating of nanoparticles onto textiles to produce biocidal fabrics. Surf and Coat Tech 204:718–722

    Article  Google Scholar 

  • Becheri A, Durr M, Nostro PL, Baglioni P (2008) Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. J Nanopart Res 10:679–689

    Article  Google Scholar 

  • Brus LE (1984) Electron–electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J Phys Chem 80:4403–4407

    Article  Google Scholar 

  • Caetano BL, Santilli CV, Meneau F, Briois V, Pulcinelli SH (2011) In situ and simultaneous UV–vis/SAXS and UV–vis/XAFS time-resolved monitoring of ZnO quantum dots formation and growth. J Phys Chem C 115:4404–4412

    Article  Google Scholar 

  • Cao H, Qian X, Gong Q, Du W, Ma X, Zhu Z (2006) Shape- and size-controlled synthesis of nanometre ZnO from a simple solution route at room temperature. Nanotechnology 17:3632–3636

    Article  Google Scholar 

  • Chen Z, Li XX, Du G, Chen N, Suen AYM (2011) A sol–gel method for preparing ZnO quantum dots with strong blue emission. J Lumin 131:2072–2077

    Article  Google Scholar 

  • Fu Y, Du X, Kulinich SA, Qiu J, Qin W, Li R, Sun J, Liu J (2007) Stable aqueous dispersion of ZnO quantum dots with strong blue emission via simple solution route. J Am Chem Soc 129:16029–16033

    Article  Google Scholar 

  • Greene LE, Law M, Tan DH, Montano M, Goldberger J, Somorjai G, Yang P (2005) General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Lett 5:1231–1236

    Article  Google Scholar 

  • Han LL, Cui L, Wang WH, Wang JL, Du XW (2012) On the origin of blue emission from ZnO quantum dots synthesized by a sol–gel route. Semicond Sci Tech 27:065020

    Article  Google Scholar 

  • Jacobsson TJ, Edvinsson T (2011) Absorption and fluorescence spectroscopy of growing ZnO quantum dots: size and band gap correlation and evidence of mobile trap states. Inorg Chem 50:9578–9586

    Article  Google Scholar 

  • Li WJ, Shi EW, Zhong WZ, Yin ZW (1999) Growth mechanism and growth habit of oxide crystals. J Cryst Growth 203:186–196

    Article  Google Scholar 

  • Marczak R, Segets D, Voigt M, Peukert W (2010) Morphological impact of zinc oxide layers on the device performance in thin-film transistors. Adv Powder Tech 21:41–49

    Article  Google Scholar 

  • Meulenkamp EA (1998) Synthesis and growth of ZnO nanoparticles. J Phys Chem B 102:5566–5572

    Article  Google Scholar 

  • Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715

    Article  Google Scholar 

  • Patra MK, Manoth M, Singh VK (2009) Siddaramana Gowd G, Choudhry VS, Vadera SR, Kumar N. J Lumin 129:320–324

    Article  Google Scholar 

  • Roest AL, Kelly JJ, Vanmaekelbergh D (2003) Coulomb blockade of electron transport in a ZnO quantum-dot solid. Appl Phys Lett 83:5530–5532

    Article  Google Scholar 

  • Spanhel L, Anderson MA (1991) Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids. J Am Chem Soc 113:2826–2833

    Article  Google Scholar 

  • Van Dijken A, Meulenkamp EA, Vanmaekelbergh D, Meijerink A (2000) The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation. J Phys Chem B 104:1715–1723

    Article  Google Scholar 

  • Viswanatha R, Amenitsch H, Sarma DD (2007) Growth kinetics of ZnO nanocrystals: a few surprises. J Am Chem Soc 129:4470–4475

    Article  Google Scholar 

  • Vossmeyer T, Katsikas L, Giersig M, Popovic IG, Diesner K, Chemseddine A, Eychmu¨ller A, Weller H (1994) CdS nanoclusters: synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift. J Phys Chem 98:7665–7673

    Article  Google Scholar 

  • Wang L, Zhang X, Li B, Sun P, Yang J, Xu H, Liu Y (2011) Superhydrophobic and ultraviolet-blocking cotton textiles. ACS Appl Mater Interfaces 3:1277–1281

    Article  Google Scholar 

  • Werner F, Gnichwitz JF, Marczak R, Palomares E, Peukert W, Hirsch A, Guldi DM (2010) Grafting porphyrins (Face-to-Edge/Orthogonal versus Face-to-Face/Parallel) to ZnO en route toward dye-sensitized solar cells. J Phys Chem B 114:14671–14678

    Article  Google Scholar 

  • Xu S, Wang Z (2011) One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res 4:1013–1098

    Article  Google Scholar 

  • Xu B, Cai Z, Wang W, Ge F (2010) Preparation of superhydrophobic cotton fabrics based on SiO2 nanoparticles and ZnO nanorod arrays with subsequent hydrophobic modification. Surf Coat Tech 204:1556

    Article  Google Scholar 

  • Yang M, Wang D, Peng L, Zhao Q, Lin Y, Wei X (2006) Surface photocurrent gas sensor with properties dependent on Ru(dcbpy)2(NCS)2 sensitized ZnO nanoparticles. Sens Actuator B 117:80–85

    Article  Google Scholar 

  • Zeng H, Duan G, Li Y, Yang S, Xu X, Cai W (2010) Blue luminescence of ZnO nanoparticles based on Non-Equilibrium processes: defect origins and emission controls. Adv Funct Mater 20:561–572

    Article  Google Scholar 

  • Zhao Y, Cai Z, Zhou Z, Fu X (2011) Fabrication of conductive network formed by polyaniline–ZnO composite on fabric surfaces. Thin Solid Films 519:5887–5891

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rong Li or Jiangning Che.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, R., Che, J., Zhang, H. et al. Study on synthesis of ZnO nanorods and its UV-blocking properties on cotton fabrics coated with the ZnO quantum dot. J Nanopart Res 16, 2581 (2014). https://doi.org/10.1007/s11051-014-2581-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2581-1

Keywords

  • ZnO
  • Quantum dots
  • ITO
  • Sol–gel method
  • UV-blocking
  • Nanorods
  • Textiles
  • Consumer products