Abstract
New water-soluble nanocomposites based on Ag and copolymers of 2,2-diallyl-1,1,3,3-tetraethylguanidiniumchloride with N-vinylpyrrolidone [poly(AGC-VP)] and vinylacetate [poly(AGC-VA)] have been developed. The average silver particle size ranged from 52 to 62 nm for poly(AGC-VA) and from 28 to 30 nm for poly(AGC-VP), with the corresponding UV–vis absorption peak position at 405–410 nm. The using of copolymers resulted in improvement in bactericide properties of composites. Following these results, the newly developed nanocomposite scaffold may be considered for new water-soluble medicines and biocides.
This is a preview of subscription content, access via your institution.





References
Ajayan PM, Marks LD (1988) Quasimelting and phases of small particles. Phys Rev Lett 60:585–587. doi:10.1103/PhysRevLett.60.585
Cason JP, Khambaswadkar K, Roberts CB (2000) Supercritical fluid and compressed solvent effects on metallic nanoparticle synthesis in reverse micelles. Ind Eng Chem Res 39:4749–4755. doi:10.1021/ie000147z
Chen S, Carroll DL (2002) Synthesis and characterization of truncated triangular silver nanoplates. Nano Lett 2:1003–1007. doi:10.1021/nl025674h
Chen DH, Huang YW (2002) Spontaneous formation of Ag nanoparticles in dimethylacetamide solution of poly(ethylene glycol). J Colloid Interface Sci 255:299–302. doi:10.1006/jcis.2002.8674
Clémenson S, David L, Espuche E (2007) Structure and morphology of nanocomposite films prepared from polyvinyl alcohol and silver nitrate: influence of thermal treatment. J Polym Sci A 45:2657–2672. doi:10.1002/pola.22020
Crooks RM, Zhao M, Sun L, Chechik V, Yeung LK (2001) Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc Chem Res 34:181–190. doi:10.1021/ar000110a
Doraiswamy N, Marks LD (1996) Electron beam induced small particle transformations: temperature. Surf Sci 348:L67–L69. doi:10.1016/0039-6028(95)01037-8
Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3:6–15. doi:10.1186/1477-3155-3-6
Esumi K, Suzuki A, Yamahira A, Torigoe K (2000) Preparation of platinum nanoparticles in ethyl acetate in the presence of poly(amidoamine) dendrimers with a methyl ester terminal group. Langmuir 16:2604–2608. doi:10.1021/la991291w
Evanoff DD, Chumanov G (2005) Synthesis and optical properties of silver nanoparticles and arrays. ChemPhysChem 6:1221–1231. doi:10.1002/cphc.200500113
García-Barrasa J, López-de-Luzuriaga JM, Monge M (2011) Silver nanoparticles: synthesis through chemical methods in solution and biomedical applications. Cent Eur J Chem 9:7–19. doi:10.2478/s11532-010-0124-x
Gilbert P, Moore LE (2005) Cationic antiseptics: diversity of action under a common epithet. J Appl Microbiol 99:703–715. doi:10.1111/j.1365-2672.2005.02664.x
Gorbunova MN (2014) Guanidine-containing polymers. In: Mishra M (ed) Encyclopedia of biomedical polymers and polymeric biomaterials. Taylor & Francis Group, New York. doi:10.1081/E-EBPP-120049929
Gorbunova MN, Lemkina LM (2010) Synthesis and antimicrobial activity of copolymers based on 2,2-diallyl-1,1,3,3-tetraethylguanidiniumchloride. Khim Pharm Zh 44(10):19–20
Gorbunova MN, Oshchepkova TE (2009) Copolymerization of 2,2-diallyl-1,1,3,3-tetraethylguanidinium chloride with vinyl acetate. Polym Sci B 51:395–400. doi:10.1134/S1560090409090115
Gorbunova MN, Vorob’eva AI, Tolstikov AG, Monakov YuB (2009) New N-allylated monomers in the synthesis of practical valuable high-molecular-weight compounds. Polym Adv Technol 20:209–215. doi:10.1002/pat.1253
He S, Yao J, Jiang P, Shi D, Zhang H, Xie S, Pang S, Gao H (2001) Formation of silver nanoparticles and self-assembled two-dimensional ordered superlattice. Langmuir 17:1571–1575. doi:10.1021/la001239w
He R, Qian X, Yin J, Zhu Z (2002) Preparation of polychrome silver nanoparticles in different solvents. J Mater Chem 12:3783–3786. doi:10.1039/B205214H
Huang HH, Ni XP, Loy GL, Chew CH, Tan KL, Loh FC, Deng JF, Xu GQ (1996) Photochemical formation of silver nanoparticles in poly(N-vinylpyrrolidone). Langmuir 12:909–912. doi:10.1021/la950435d
Iijima S, Ichihashi T (1986) Structural instability of ultrafine particles of metals. Phys Rev Lett 56:616–619. doi:10.1103/PhysRevLett.56.616
Iizuka Y, Fujiki H, Yamauchi N, Chijiiwa T, Arai Sh, Tsubota S, Haruta M (1997) Adsorption of CO on gold supported on TiO2. Catal Today 36:115–123. doi:10.1016/S0920-5861(96)00204-0
Ikeda T, Tazuke S (1985) Biocidal polycations. Polym Prepr 26:226–227
Karpov SV, Slabko VV (2003) Optical and photophysical properties of fractal-structurized sols of metals. SB RAS, Novosibirsk
Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer-Verlag, New York
Кrutyakov YuA, Kudrinskiy AA, Olenin AYu, Lisichkin GV (2008) Synthesis and properties of silver nanoparticles: advances and prospects. Russ Chem Rev 77:233–257. doi:10.1070/RC2008v077n03ABEH003751
Li X, Zhang J, Xu W, Jia H, Wang X, Yang B, Zhao B, Li B, Ozaki Y (2003) Mercaptoacetic acid-capped silver nanoparticles colloid: formation, morphology, and SERS activity. Langmuir 19:4285–4290. doi:10.1021/la0341815
Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551. doi:10.1007/s11051-010-9900-y
Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Tapia Ramirez J, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353. doi:10.1088/0957-4484/16/10/059
Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium escherichia coli. Appl Environ Microbiol 73:1712–1720. doi:10.1128/AEM.02218-06
Pastoriza-Santos I, Liz-Marzán LM (2002) Preparation of PVP-protected metal nanoparticles in DMF. Langmuir 18:2888–2894. doi:10.1021/la015578g
Prozorovskiy VB, Prozorovskaya MP, Demchenko VM (1978) Express-method of effective dose determination and its mistakes. Pharmacol Toxicol 4:497–502
Rivas BL, Pereira E, Maureira A (2009a) Functional water-soluble polymers: polymer-metal ion removal and biocide properties. Polym Int 58:1093–1114. doi:10.1002/pi.2632
Rivas BL, Maureira A, Guzman CG, Mondaca MA (2009b) Poly(2-acrylamido glycolic acid-co-2-acrylamido-2-methyl-1-propane sulfonic acid): synthesis, characterization, and retention properties for environmentally impacting metal ions. J Appl Polym Sci 111:78–86. doi:10.1002/app.29019
Sahoo SK, Parveen S, Panda JJ (2007) The present and future of nanotechnology in human health care. Nanomedicine 3:20–31. doi:10.1016/j.nano.2006.11.008
Somorjai G (2004) Heterogeneous catalysis: just as for enzymes, flexibility and mobility are emerging as key features of catalytically active metal surfaces. Nature 430:730. doi:10.1038/430730a
Sondi I, Goia DV, Matijevic´ E (2003) Prearation of highly concentrated S dispersion of uniform silver nanoparticles. J Colloid Interface Sci 260:75–81. doi:10.1016/S0021-9797(02)00205-9
Sun Y, Xia Y (2002a) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179. doi:10.1126/science.1077229
Sun Y, Xia Y (2002b) Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. Adv Mater 14:833–837. doi:10.1002/1521-4095(20020605)14:11<833:AID-ADMA833>3.0.CO;2-K
Tan Y, Dai X, Li Y, Zhu D (2003) Preparation of gold, platinum, palladium and silver nanoparticles by the reduction of their salts with a weak reductant-potassium bitartrate. J Mater Chem 13:1069–1075. doi:10.1039/B211386D
Velikov KP, Zegeres GE, van Blaaderen A (2003) Synthesis and characterization of large colloidal silver particles. Langmuir 19:1384–1389. doi:10.1021/la026610p
Vorob’eva AI, Sagitova DR, Gorbunova MN, Muslukhov RR, Kolesov SV, Tolstikov AG, Monakov YuB (2007) Activity of diallylamido-bis(diethylamido)guanidinium chloride in radical polymerization reactions. Polym Sci B 49:172–176. doi:10.1134/S1560090407070020
Wilkinson JM (2003) Nanotechnology applications in medicine. Med Dev Technol 14:29–31
Yacaman MJ, Ascencio JA, Liu HB, Gardea-Torresdey J (2001) Structure shape and stability of nanometric sized particles. J Vac Sci Technol 19:1091–1103. doi:10.1116/1.1387089
Zhang Z, Zhae B, Hu L (1996) PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes. J Solid State Chem 121:105–110. doi:10.1006/jssc.1996.0015
Acknowledgments
Financial support by the Russian Foundation for Basic Research (Grant No. 14-03-00081) is gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gorbunova, M., Lemkina, L. New biocide guanidine-containing nanocomposites. J Nanopart Res 16, 2566 (2014). https://doi.org/10.1007/s11051-014-2566-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11051-014-2566-0