Skip to main content

New biocide guanidine-containing nanocomposites

Abstract

New water-soluble nanocomposites based on Ag and copolymers of 2,2-diallyl-1,1,3,3-tetraethylguanidiniumchloride with N-vinylpyrrolidone [poly(AGC-VP)] and vinylacetate [poly(AGC-VA)] have been developed. The average silver particle size ranged from 52 to 62 nm for poly(AGC-VA) and from 28 to 30 nm for poly(AGC-VP), with the corresponding UV–vis absorption peak position at 405–410 nm. The using of copolymers resulted in improvement in bactericide properties of composites. Following these results, the newly developed nanocomposite scaffold may be considered for new water-soluble medicines and biocides.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Ajayan PM, Marks LD (1988) Quasimelting and phases of small particles. Phys Rev Lett 60:585–587. doi:10.1103/PhysRevLett.60.585

    Article  Google Scholar 

  • Cason JP, Khambaswadkar K, Roberts CB (2000) Supercritical fluid and compressed solvent effects on metallic nanoparticle synthesis in reverse micelles. Ind Eng Chem Res 39:4749–4755. doi:10.1021/ie000147z

    Article  Google Scholar 

  • Chen S, Carroll DL (2002) Synthesis and characterization of truncated triangular silver nanoplates. Nano Lett 2:1003–1007. doi:10.1021/nl025674h

    Article  Google Scholar 

  • Chen DH, Huang YW (2002) Spontaneous formation of Ag nanoparticles in dimethylacetamide solution of poly(ethylene glycol). J Colloid Interface Sci 255:299–302. doi:10.1006/jcis.2002.8674

    Article  Google Scholar 

  • Clémenson S, David L, Espuche E (2007) Structure and morphology of nanocomposite films prepared from polyvinyl alcohol and silver nitrate: influence of thermal treatment. J Polym Sci A 45:2657–2672. doi:10.1002/pola.22020

    Article  Google Scholar 

  • Crooks RM, Zhao M, Sun L, Chechik V, Yeung LK (2001) Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc Chem Res 34:181–190. doi:10.1021/ar000110a

    Article  Google Scholar 

  • Doraiswamy N, Marks LD (1996) Electron beam induced small particle transformations: temperature. Surf Sci 348:L67–L69. doi:10.1016/0039-6028(95)01037-8

    Article  Google Scholar 

  • Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3:6–15. doi:10.1186/1477-3155-3-6

    Article  Google Scholar 

  • Esumi K, Suzuki A, Yamahira A, Torigoe K (2000) Preparation of platinum nanoparticles in ethyl acetate in the presence of poly(amidoamine) dendrimers with a methyl ester terminal group. Langmuir 16:2604–2608. doi:10.1021/la991291w

    Article  Google Scholar 

  • Evanoff DD, Chumanov G (2005) Synthesis and optical properties of silver nanoparticles and arrays. ChemPhysChem 6:1221–1231. doi:10.1002/cphc.200500113

    Article  Google Scholar 

  • García-Barrasa J, López-de-Luzuriaga JM, Monge M (2011) Silver nanoparticles: synthesis through chemical methods in solution and biomedical applications. Cent Eur J Chem 9:7–19. doi:10.2478/s11532-010-0124-x

    Article  Google Scholar 

  • Gilbert P, Moore LE (2005) Cationic antiseptics: diversity of action under a common epithet. J Appl Microbiol 99:703–715. doi:10.1111/j.1365-2672.2005.02664.x

    Article  Google Scholar 

  • Gorbunova MN (2014) Guanidine-containing polymers. In: Mishra M (ed) Encyclopedia of biomedical polymers and polymeric biomaterials. Taylor & Francis Group, New York. doi:10.1081/E-EBPP-120049929

    Google Scholar 

  • Gorbunova MN, Lemkina LM (2010) Synthesis and antimicrobial activity of copolymers based on 2,2-diallyl-1,1,3,3-tetraethylguanidiniumchloride. Khim Pharm Zh 44(10):19–20

    Google Scholar 

  • Gorbunova MN, Oshchepkova TE (2009) Copolymerization of 2,2-diallyl-1,1,3,3-tetraethylguanidinium chloride with vinyl acetate. Polym Sci B 51:395–400. doi:10.1134/S1560090409090115

    Google Scholar 

  • Gorbunova MN, Vorob’eva AI, Tolstikov AG, Monakov YuB (2009) New N-allylated monomers in the synthesis of practical valuable high-molecular-weight compounds. Polym Adv Technol 20:209–215. doi:10.1002/pat.1253

    Article  Google Scholar 

  • He S, Yao J, Jiang P, Shi D, Zhang H, Xie S, Pang S, Gao H (2001) Formation of silver nanoparticles and self-assembled two-dimensional ordered superlattice. Langmuir 17:1571–1575. doi:10.1021/la001239w

    Article  Google Scholar 

  • He R, Qian X, Yin J, Zhu Z (2002) Preparation of polychrome silver nanoparticles in different solvents. J Mater Chem 12:3783–3786. doi:10.1039/B205214H

    Google Scholar 

  • Huang HH, Ni XP, Loy GL, Chew CH, Tan KL, Loh FC, Deng JF, Xu GQ (1996) Photochemical formation of silver nanoparticles in poly(N-vinylpyrrolidone). Langmuir 12:909–912. doi:10.1021/la950435d

    Article  Google Scholar 

  • Iijima S, Ichihashi T (1986) Structural instability of ultrafine particles of metals. Phys Rev Lett 56:616–619. doi:10.1103/PhysRevLett.56.616

    Article  Google Scholar 

  • Iizuka Y, Fujiki H, Yamauchi N, Chijiiwa T, Arai Sh, Tsubota S, Haruta M (1997) Adsorption of CO on gold supported on TiO2. Catal Today 36:115–123. doi:10.1016/S0920-5861(96)00204-0

    Article  Google Scholar 

  • Ikeda T, Tazuke S (1985) Biocidal polycations. Polym Prepr 26:226–227

    Google Scholar 

  • Karpov SV, Slabko VV (2003) Optical and photophysical properties of fractal-structurized sols of metals. SB RAS, Novosibirsk

    Google Scholar 

  • Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer-Verlag, New York

    Book  Google Scholar 

  • Кrutyakov YuA, Kudrinskiy AA, Olenin AYu, Lisichkin GV (2008) Synthesis and properties of silver nanoparticles: advances and prospects. Russ Chem Rev 77:233–257. doi:10.1070/RC2008v077n03ABEH003751

    Article  Google Scholar 

  • Li X, Zhang J, Xu W, Jia H, Wang X, Yang B, Zhao B, Li B, Ozaki Y (2003) Mercaptoacetic acid-capped silver nanoparticles colloid: formation, morphology, and SERS activity. Langmuir 19:4285–4290. doi:10.1021/la0341815

    Article  Google Scholar 

  • Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551. doi:10.1007/s11051-010-9900-y

    Article  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Tapia Ramirez J, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353. doi:10.1088/0957-4484/16/10/059

    Article  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium escherichia coli. Appl Environ Microbiol 73:1712–1720. doi:10.1128/AEM.02218-06

    Article  Google Scholar 

  • Pastoriza-Santos I, Liz-Marzán LM (2002) Preparation of PVP-protected metal nanoparticles in DMF. Langmuir 18:2888–2894. doi:10.1021/la015578g

    Article  Google Scholar 

  • Prozorovskiy VB, Prozorovskaya MP, Demchenko VM (1978) Express-method of effective dose determination and its mistakes. Pharmacol Toxicol 4:497–502

    Google Scholar 

  • Rivas BL, Pereira E, Maureira A (2009a) Functional water-soluble polymers: polymer-metal ion removal and biocide properties. Polym Int 58:1093–1114. doi:10.1002/pi.2632

    Article  Google Scholar 

  • Rivas BL, Maureira A, Guzman CG, Mondaca MA (2009b) Poly(2-acrylamido glycolic acid-co-2-acrylamido-2-methyl-1-propane sulfonic acid): synthesis, characterization, and retention properties for environmentally impacting metal ions. J Appl Polym Sci 111:78–86. doi:10.1002/app.29019

    Article  Google Scholar 

  • Sahoo SK, Parveen S, Panda JJ (2007) The present and future of nanotechnology in human health care. Nanomedicine 3:20–31. doi:10.1016/j.nano.2006.11.008

    Google Scholar 

  • Somorjai G (2004) Heterogeneous catalysis: just as for enzymes, flexibility and mobility are emerging as key features of catalytically active metal surfaces. Nature 430:730. doi:10.1038/430730a

    Article  Google Scholar 

  • Sondi I, Goia DV, Matijevic´ E (2003) Prearation of highly concentrated S dispersion of uniform silver nanoparticles. J Colloid Interface Sci 260:75–81. doi:10.1016/S0021-9797(02)00205-9

    Article  Google Scholar 

  • Sun Y, Xia Y (2002a) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179. doi:10.1126/science.1077229

    Article  Google Scholar 

  • Sun Y, Xia Y (2002b) Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. Adv Mater 14:833–837. doi:10.1002/1521-4095(20020605)14:11<833:AID-ADMA833>3.0.CO;2-K

    Article  Google Scholar 

  • Tan Y, Dai X, Li Y, Zhu D (2003) Preparation of gold, platinum, palladium and silver nanoparticles by the reduction of their salts with a weak reductant-potassium bitartrate. J Mater Chem 13:1069–1075. doi:10.1039/B211386D

    Google Scholar 

  • Velikov KP, Zegeres GE, van Blaaderen A (2003) Synthesis and characterization of large colloidal silver particles. Langmuir 19:1384–1389. doi:10.1021/la026610p

    Article  Google Scholar 

  • Vorob’eva AI, Sagitova DR, Gorbunova MN, Muslukhov RR, Kolesov SV, Tolstikov AG, Monakov YuB (2007) Activity of diallylamido-bis(diethylamido)guanidinium chloride in radical polymerization reactions. Polym Sci B 49:172–176. doi:10.1134/S1560090407070020

    Google Scholar 

  • Wilkinson JM (2003) Nanotechnology applications in medicine. Med Dev Technol 14:29–31

    Google Scholar 

  • Yacaman MJ, Ascencio JA, Liu HB, Gardea-Torresdey J (2001) Structure shape and stability of nanometric sized particles. J Vac Sci Technol 19:1091–1103. doi:10.1116/1.1387089

    Article  Google Scholar 

  • Zhang Z, Zhae B, Hu L (1996) PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes. J Solid State Chem 121:105–110. doi:10.1006/jssc.1996.0015

    Article  Google Scholar 

Download references

Acknowledgments

Financial support by the Russian Foundation for Basic Research (Grant No. 14-03-00081) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Gorbunova.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbunova, M., Lemkina, L. New biocide guanidine-containing nanocomposites. J Nanopart Res 16, 2566 (2014). https://doi.org/10.1007/s11051-014-2566-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2566-0

Keywords