Skip to main content
Log in

A polymer encapsulation approach to prepare zwitterion-like, biocompatible quantum dots with wide pH and ionic stability

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A surface modification approach adopting polymer encapsulation was developed to prepare zwitterion-like quantum dots (ZWL-QDs). The fundamental physical, chemical, and biological properties of the ZWL-QDs were characterized. It is found that the ZWL-QDs almost preserve the quantum yield (QY) of native hydrophobic QDs in organic solvents, and also are compact in size (7 ~ 10 nm hydrodynamic diameter) and stable over wide pHs or in high salinity solutions. Further cellular study shows that the ZWL-QDs with a concentration less than 100 nM have a minimal cytotoxicity and thus are biocompatible. Characterizing and understanding these essential properties of the ZWL-QDs are an important step before employing them for various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al-Jamal WT, Kostarelos K (2011) Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc Chem Res 44:1094–1104

    Article  Google Scholar 

  • Bagalkot V, Gao X (2011) siRNA-aptamer chimeras on nanoparticles: preserving targeting functionality for effective gene silencing. ASC Nano 5:8131–8139

    Article  Google Scholar 

  • Booth M, Peel R, Partanen R, Hondow N, Vasilca V, Jeukenb LJC, Critchley K (2013) Amphipol-encapsulated CuInS2/ZnS quantum dots with excellent colloidal stability. RSC Adv 3:20559–20566

    Article  Google Scholar 

  • Breus VV, Heyes CD, Tron K, Nienhaus GU (2009) Zwitterionic biocompatible quantum dots for wide pH stability and weak non-specific binding to cells. ACS Nano 3:2573–2580

    Article  Google Scholar 

  • Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Article  Google Scholar 

  • Delehanty J, Blanco-Canosa J, Bradburne C, Susumu K, Stewart M, Prasuhn D, Dawson P, Medintz I (2013) Site-specific cellular delivery of quantum dots with chemoselectively-assembled modular peptides. Chem Commun 49:7878–7880

    Article  Google Scholar 

  • Giljohann DA, Seferos DS, Prigodich AE, Patel PC, Mirkin CA (2009) Gene regulation with polyvalent siRNA-nanoparticle conjugates. J Am Chem Soc 131:2072–2073

    Article  Google Scholar 

  • Huang L, Zhu X, Publicover NG, Hunter KW, Ahmadiantehrani M, de Bettencourt-Dias A, Bell TW (2013) Cadmium and zinc alloyed Cu-In-S nanocrystals and their optical properties. J Nanopart Res., 15, doi:10.1007/s11051-013-2056-9.

  • Kievit FM, Veiseh O, Bhattarai N, Fang C, Gunn JW, Lee D, Ellenbogen RG, Olson JM, Zhang M (2009) PEI-PEG-Chitosan copolymer coated iron oxide nanoparticles for safe gene delivery: synthesis, complexation, and transfection. Adv Funct Mater 19:2244–2251

    Article  Google Scholar 

  • Lee H, Kim IK, Park TG (2010) Intracellular trafficking and unpacking of siRNA/quantum dot-PEI complexes modified with and without cell penetrating peptide: confocal and flow cytometric FRET analysis. Bioconjugate Chem 21:289–295

    Article  Google Scholar 

  • Lees E, Nguyen T, Clayton A, Mulvaney P (2009) The preparation of colloidally stable, water-soluble, biocompatible, semiconductor nanocrystals with a small hydrodynamic diameter. ACS Nano 3(5):1121–1128

    Article  Google Scholar 

  • Liu X, Huang H, Liu G, Zhou W, Chen Y, Jin Q, Ji J (2013) Multidentate zwitterionic chitosan oligosaccharide modified gold nanoparticles: stability, biocompatibility and cell interactions. Nanoscale 5:3982–3991

    Article  Google Scholar 

  • Mei B, Susumu K, Medintz I, Delehanty J, Mountziaris T, Mattoussi H (2008) Modular poly (ethylene glycol) ligands for biocompatible semiconductor and gold nanocrystals with extended pH and ionic stability. J Mater Chem 18:4949–4958

    Google Scholar 

  • Muro E, Pons T, Lequeux N, Fragola A, Sanson N, Lenkei Z, Dubertret B (2010) Small and stable sulfobetaine zwitterionic quantum dots for functional live-cell imaging. J Am Chem Soc 132:4556–4557

    Article  Google Scholar 

  • Muro E, Fragola A, Pons T, Lequeux N, Ioannou A, Skourides P, Dubertret B (2012) Comparing intracellular stability and targeting of sulfobetaine quantum dots with other surface chemistries in live cells. Small 8:1029–1037

    Article  Google Scholar 

  • Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5:763–775

    Article  Google Scholar 

  • Sperling RA, Parak WJ (2010) Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Phil Trans R Soc A 368:1333–1383

    Article  Google Scholar 

  • Susumu K, Uyed H, Medintz I, Pons T, Delehanty J, Mattoussi H (2007) Enhancing the stability and biological functionalities of quantum dots via compact multifunctional ligands. J Am Chem Soc 129:13987–13996

    Article  Google Scholar 

  • Uyeda H, Medintz I, Jaiswal J, Simon S, Mattoussi H (2005) Synthesis of compact multidentate ligands to prepare stable hydrophilic quantum dot fluorophores. J Am Chem Soc 127:3870–3878

    Article  Google Scholar 

  • Veiseh O, Kievit FM, Fang C, Mu N, Jana S, Leung MC, Mok H, Ellenbogen RG, Park JO, Zhang M (2010) Chlorotoxin bound magnetic nanovector tailored for cancer cell targeting, imaging, and siRNA delivery. Biomaterials 31:8032–8042

    Article  Google Scholar 

  • Yezhelyev MV, Qi L, O’Regan RM, Nie S, Gao X (2008) Proton-sponge coated quantum dots for siRNA delivery and intracellular imaging. J Am Chem Soc 130:9006–9012

    Article  Google Scholar 

  • Yu W, Chang E, Falkner J, Zhang J, Al-Somali A, Sayes C, Johns J, Drezek R, Colvin V (2007) Forming biocompatible and nonaggregated nanocrystals in water using amphiphilic polymers. J Am Chem Soc 129:2871–2879

    Article  Google Scholar 

  • Zhou J, Wang Q, Zhang C (2013) Liposome–quantum dot complexes enable multiplexed detection of attomolar DNAs without target amplification. J Am Chem Soc 135:2056–2059

    Article  Google Scholar 

  • Zimmer J, Kim S, Ohnishi S, Tanaka E, Frangioni J, Bawendi M (2006) Size series of small indium arsenide-zinc selenide core-shell nanocrystals and their application to in vivo imaging. J Am Chem Soc 128:2526–2527

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Institute of Health through the grant #1P20GM103650-01.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liming Huang or Xiaoshan Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Liao, M., Chen, S. et al. A polymer encapsulation approach to prepare zwitterion-like, biocompatible quantum dots with wide pH and ionic stability. J Nanopart Res 16, 2555 (2014). https://doi.org/10.1007/s11051-014-2555-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2555-3

Keywords

Navigation