Skip to main content
Log in

The inclusion into PLGA nanoparticles enables α-bisabolol to efficiently inhibit the human dendritic cell pro-inflammatory activity

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

α-bisabolol, a natural sesquiterpene alcohol, has generated considerable interest for its anti-inflammatory activity. Since the mechanisms of this anti-inflammatory action remain poorly understood, we investigated whether α-bisabolol affects the release of pro-inflammatory cytokines IL-12, IL-23, IL-6, and TNFα by human dendritic cells (DCs). We found that α-bisabolol did not induce the secretion of these cytokines and did not affect their release induced upon DC challenge with lipopolysaccharide (LPS), a well-known immune cell stimulator. As α-bisabolol is scarcely ingested by the cells, we wondered whether the inclusion of α-bisabolol into nanoparticles could favor its internalization by DCs and consequently its effects on cytokine secretion. We then prepared and characterized poly(lactic-co-glycolic acid) (PLGA) nanoparticles, with a dynamic light scattering peak centered at 154 nm and a half width at half maximum of about 48 nm. These particles were unable to affect per se cytokine secretion by both resting and LPS-stimulated DCs and were internalized by human DCs as demonstrated by confocal microscopy analysis. We then loaded PLGA nanoparticles with α-bisabolol and we observed that PLGA-associated α-bisabolol did not stimulate the cytokine release by resting DCs, but decreased IL-12, IL-23, IL-6, and TNFα secretion by LPS-stimulated DCs. Our results indicate that α-bisabolol inclusion into PLGA nanoparticles represents a very promising tool for designing new anti-inflammatory, anti-pyretic and, possibly, immunosuppressive therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alexis F, Pridgen E, Molnar LK, Farokhzad OC (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5:505–515. doi:10.1021/mp800051m

    Article  Google Scholar 

  • Amidon GL, Lennernas H, Shah VP, Crison JR (1995) A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 12:413–420

    Article  Google Scholar 

  • Anter J, Romero-Jimenez M, Fernandez-Bedmar Z, Villatoro-Pulido M, Analla M, Alonso-Moraga A, Munoz-Serrano A (2011) Antigenotoxicity, cytotoxicity, and apoptosis induction by apigenin, bisabolol, and protocatechuic acid. J Med Food 14:276–283. doi:10.1089/jmf.2010.0139

    Article  Google Scholar 

  • Astete CE, Sabliov CM (2006) Synthesis and characterization of PLGA nanoparticles. J Biomater Sci Polym Ed 17:247–289

    Article  Google Scholar 

  • Bala I, Hariharan S, Kumar MN (2004) PLGA nanoparticles in drug delivery: the state of the art. Crit Rev Ther Drug Carrier Syst 21:387–422

    Article  Google Scholar 

  • Bamias G, Cominelli F (2006) Novel strategies to attenuate immune activation in Crohn’s disease. Curr Opin Pharmacol 6:401–407. doi:10.1016/j.coph.2006.03.008

    Article  Google Scholar 

  • Belmokhtar CA, Hillion J, Segal-Bendirdjian E (2001) Staurosporine induces apoptosis through both caspase-dependent and caspase-independent mechanisms. Oncogene 20:3354–3362. doi:10.1038/sj.onc.1204436

    Article  Google Scholar 

  • Bhatia SP, McGinty D, Letizia CS, Api AM (2008) Fragrance material review on alpha-bisabolol. Food Chem Toxicol 46(Suppl 11):S72–S76. doi:10.1016/j.fct.2008.06.025

    Article  Google Scholar 

  • Bonifacio M et al (2012) alpha-bisabolol is an effective proapoptotic agent against BCR-ABL(+) cells in synergism with Imatinib and Nilotinib. PLoS One 7:e46674. doi:10.1371/journal.pone.0046674

    Article  Google Scholar 

  • Braga PC, Dal Sasso M, Fonti E, Culici M (2009) Antioxidant activity of bisabolol: inhibitory effects on chemiluminescence of human neutrophil bursts and cell-free systems. Pharmacology 83:110–115. doi:10.1159/000186049

    Article  Google Scholar 

  • Brehm-Stecher BF, Johnson EA (2003) Sensitization of Staphylococcus aureus and Escherichia coli to antibiotics by the sesquiterpenoids nerolidol, farnesol, bisabolol, and apritone. Antimicrob Agents Chemother 47:3357–3360

    Article  Google Scholar 

  • Cavalieri E et al (2009) Involvement of mitochondrial permeability transition pore opening in alpha-bisabolol induced apoptosis. FEBS J 276:3990–4000. doi:10.1111/j.1742-4658.2009.07108.x

    Article  Google Scholar 

  • Chang C (2010) The immune effects of naturally occurring and synthetic nanoparticles. J Autoimmun 34:J234–J246. doi:10.1016/j.jaut.2009.11.009

    Article  Google Scholar 

  • Chen W, Hou J, Yin Y, Jang J, Zheng Z, Fan H, Zou G (2010) alpha-Bisabolol induces dose- and time-dependent apoptosis in HepG2 cells via a Fas- and mitochondrial-related pathway, involves p53 and NFkappaB. Biochem Pharmacol 80:247–254. doi:10.1016/j.bcp.2010.03.021

    Article  Google Scholar 

  • Cools N, Petrizzo A, Smits E, Buonaguro FM, Tornesello ML, Berneman Z, Buonaguro L (2011) Dendritic cells in the pathogenesis and treatment of human diseases: a Janus Bifrons? Immunotherapy 3:1203–1222. doi:10.2217/imt.11.110

    Article  Google Scholar 

  • da Silva AP, Martini MV, de Oliveira CM, Cunha S, de Carvalho JE, Ruiz AL, da Silva CC (2010) Antitumor activity of (-)-alpha-bisabolol-based thiosemicarbazones against human tumor cell lines. Eur J Med Chem 45:2987–2993. doi:10.1016/j.ejmech.2010.03.026

    Article  Google Scholar 

  • Darra E et al (2007) Alpha-bisabolol: unexpected plant-derived weapon in the struggle against tumour survival? Ital J Biochem 56:323–328

    Google Scholar 

  • Darra E et al (2008) Insight into the apoptosis-inducing action of alpha-bisabolol towards malignant tumor cells: involvement of lipid rafts and Bid. Arch Biochem Biophys 476:113–123. doi:10.1016/j.abb.2008.02.004

    Article  Google Scholar 

  • De Nitto D, Sarra M, Cupi ML, Pallone F, Monteleone G (2010) Targeting IL-23 and Th17-cytokines in inflammatory bowel diseases. Curr Pharm Des 16:3656–3660

    Article  Google Scholar 

  • De S, Robinson DH (2004) Particle size and temperature effect on the physical stability of PLGA nanospheres and microspheres containing Bodipy. AAPS PharmSciTech 5:e53. doi:10.1208/pt050453

    Article  Google Scholar 

  • Debbage P (2009) Targeted drugs and nanomedicine: present and future. Curr Pharm Des 15:153–172

    Article  Google Scholar 

  • Di Gioacchino M et al (2011) Immunotoxicity of nanoparticles. Int J Immunopathol Pharmacol 24:65S–71S

    Google Scholar 

  • Diwan M, Elamanchili P, Lane H, Gainer A, Samuel J (2003) Biodegradable nanoparticle mediated antigen delivery to human cord blood derived dendritic cells for induction of primary T cell responses. J Drug Target 11:495–507. doi:10.1080/10611860410001670026

    Article  Google Scholar 

  • Elamanchili P, Diwan M, Cao M, Samuel J (2004) Characterization of poly(d, l-lactic-co-glycolic acid) based nanoparticulate system for enhanced delivery of antigens to dendritic cells. Vaccine 22:2406–2412

    Article  Google Scholar 

  • Elmquist JK, Scammell TE, Saper CB (1997) Mechanisms of CNS response to systemic immune challenge: the febrile response. Trends Neurosci 20:565–570

    Article  Google Scholar 

  • Fadeel B, Garcia-Bennett AE (2010) Better safe than sorry: understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv Drug Deliv Rev 62:362–374. doi:10.1016/j.addr.2009.11.008

    Article  Google Scholar 

  • Gomes-Carneiro MR, Dias DM, De-Oliveira AC, Paumgartten FJ (2005) Evaluation of mutagenic and antimutagenic activities of alpha-bisabolol in the Salmonella/microsome assay. Mutat Res 585:105–112. doi:10.1016/j.mrgentox.2005.04.007

    Article  Google Scholar 

  • Granucci F, Zanoni I, Ricciardi-Castagnoli P (2008) Central role of dendritic cells in the regulation and deregulation of immune responses. Cell Mol Life Sci 65:1683–1697

    Article  Google Scholar 

  • Gruys E, Toussaint MJ, Niewold TA, Koopmans SJ (2005) Acute phase reaction and acute phase proteins. J Zhejiang Univ Sci B 6:1045–1056. doi:10.1631/jzus.2005.B1045

    Article  Google Scholar 

  • Hamdy S, Haddadi A, Hung RW, Lavasanifar A (2011) Targeting dendritic cells with nano-particulate PLGA cancer vaccine formulations. Adv Drug Deliv Rev 63:943–955. doi:10.1016/j.addr.2011.05.021

    Article  Google Scholar 

  • Harirforoosh S, Asghar W, Jamali F (2013) Adverse effects of nonsteroidal antiinflammatory drugs: an update of gastrointestinal, cardiovascular and renal complications. J Pharm Pharm Sci 16:821–847

    Google Scholar 

  • He C, Hu Y, Yin L, Tang C, Yin C (2010) Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31:3657–3666. doi:10.1016/j.biomaterials.2010.01.065

    Article  Google Scholar 

  • Hespel C, Moser M (2012) Role of inflammatory dendritic cells in innate and adaptive immunity. Eur J Immunol 42:2535–2543. doi:10.1002/eji.201242480

    Article  Google Scholar 

  • Jain RA (2000) The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 21:2475–2490

    Article  Google Scholar 

  • Kempf M et al (2003) Improved stimulation of human dendritic cells by receptor engagement with surface-modified microparticles. J Drug Target 11:11–18. doi:10.1080/1061186031000072978

    Article  Google Scholar 

  • Kim S, Jung E, Kim JH, Park YH, Lee J, Park D (2011) Inhibitory effects of (-)-alpha-bisabolol on LPS-induced inflammatory response in RAW264.7 macrophages. Food Chem Toxicol 49:2580–2585. doi:10.1016/j.fct.2011.06.076

    Article  Google Scholar 

  • Lanzavecchia A, Sallusto F (2001) Regulation of T cell immunity by dendritic cells. Cell 106:263–266

    Article  Google Scholar 

  • Leite Gde O, Leite LH, Sampaio Rde S, Araruna MK, de Menezes IR, da Costa JG, Campos AR (2011) (-)-alpha-Bisabolol attenuates visceral nociception and inflammation in mice. Fitoterapia 82:208–211. doi:10.1016/j.fitote.2010.09.012

    Article  Google Scholar 

  • Li N, Xia T, Nel AE (2008) The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic Biol Med 44:1689–1699. doi:10.1016/j.freeradbiomed.2008.01.028

    Article  Google Scholar 

  • Lutsiak ME, Robinson DR, Coester C, Kwon GS, Samuel J (2002) Analysis of poly(d, l-lactic-co-glycolic acid) nanosphere uptake by human dendritic cells and macrophages in vitro. Pharm Res 19:1480–1487

    Article  Google Scholar 

  • Moura Rocha NF et al (2010) Gastroprotection of (-)-alpha-bisabolol on acute gastric mucosal lesions in mice: the possible involved pharmacological mechanisms. Fundam Clin Pharmacol 24:63–71. doi:10.1111/j.1472-8206.2009.00726.x

    Article  Google Scholar 

  • Neurath MF, Finotto S (2011) IL-6 signaling in autoimmunity, chronic inflammation and inflammation-associated cancer. Cytokine Growth Factor Rev 22:83–89. doi:10.1016/j.cytogfr.2011.02.003

    Article  Google Scholar 

  • Parveen S, Misra R, Sahoo SK (2012) Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine 8:147–166. doi:10.1016/j.nano.2011.05.016

    Google Scholar 

  • Quintanar-Guerrero D, Allemann E, Fessi H, Doelker E (1998) Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug Dev Ind Pharm 24:1113–1128. doi:10.3109/03639049809108571

    Article  Google Scholar 

  • Reis e Sousa C (2001) Dendritic cells as sensors of infection Immunity 14:495–498

    Google Scholar 

  • Rocha NF et al (2011) Anti-nociceptive and anti-inflammatory activities of (-)-alpha-bisabolol in rodents. Naunyn Schmiedebergs Arch Pharmacol 384:525–533. doi:10.1007/s00210-011-0679-x

    Article  Google Scholar 

  • Sabat R, Grutz G, Warszawska K, Kirsch S, Witte E, Wolk K, Geginat J (2010) Biology of interleukin-10. Cytokine Growth Factor Rev 21:331–344. doi:10.1016/j.cytogfr.2010.09.002

    Article  Google Scholar 

  • Schakel K (2009) Dendritic cells–why can they help and hurt us. Exp Dermatol 18:264–273. doi:10.1111/j.1600-0625.2008.00823.x

    Article  Google Scholar 

  • Segat D et al (2011) Proinflammatory effects of bare and PEGylated ORMOSIL-, PLGA- and SUV-NPs on monocytes and PMNs and their modulation by f-MLP. Nanomedicine (Lond) 6:1027–1046. doi:10.2217/nnm.11.30

    Article  Google Scholar 

  • Seki T et al (2011) Antitumor effects of alpha-bisabolol against pancreatic cancer. Cancer Sci 102:2199–2205. doi:10.1111/j.1349-7006.2011.02082.x

    Article  Google Scholar 

  • Suffredini AF, Fantuzzi G, Badolato R, Oppenheim JJ, O’Grady NP (1999) New insights into the biology of the acute phase response. J Clin Immunol 19:203–214

    Article  Google Scholar 

  • van Kooyk Y, Geijtenbeek TB (2003) DC-SIGN: escape mechanism for pathogens. Nat Rev Immunol 3:697–709

    Google Scholar 

  • Vignali DA, Kuchroo VK (2012) IL-12 family cytokines: immunological playmakers. Nat Immunol 13:722–728. doi:10.1038/ni.2366

    Article  Google Scholar 

  • Villegas LF, Marcalo A, Martin J, Fernandez ID, Maldonado H, Vaisberg AJ, Hammond GB (2001) (+)-epi-Alpha-bisabolol [correction of bisbolol] is the wound-healing principle of Peperomia galioides: investigation of the in vivo wound-healing activity of related terpenoids. J Nat Prod 64:1357–1359

    Article  Google Scholar 

  • Waeckerle-Men Y, Groettrup M (2005) PLGA microspheres for improved antigen delivery to dendritic cells as cellular vaccines. Adv Drug Deliv Rev 57:475–482. doi:10.1016/j.addr.2004.09.007

    Article  Google Scholar 

  • Whitehouse MW (2011) Anti-inflammatory glucocorticoid drugs: reflections after 60 years. Inflammopharmacology 19:1–19. doi:10.1007/s10787-010-0056-2

    Article  Google Scholar 

  • Wong M et al (2008) TNFalpha blockade in human diseases: mechanisms and future directions. Clin Immunol 126:121–136. doi:10.1016/j.clim.2007.08.013

    Article  Google Scholar 

  • Xu M, Mizoguchi I, Morishima N, Chiba Y, Mizuguchi J, Yoshimoto T (2010) Regulation of antitumor immune responses by the IL-12 family cytokines, IL-12, IL-23, and IL-27. Clin Dev Immunol. doi:10.1155/2010/832454

    Google Scholar 

  • Yamashita F, Hashida M (2013) Pharmacokinetic considerations for targeted drug delivery. Adv Drug Deliv Rev 65:139–147. doi:10.1016/j.addr.2012.11.006

    Article  Google Scholar 

  • Yang D et al (2010) [Gd@C(82)(OH)(22)](n) nanoparticles induce dendritic cell maturation and activate Th1 immune responses. ACS Nano 4:1178–1186. doi:10.1021/nn901478z

    Article  Google Scholar 

  • Zanoni I, Granucci F (2010) Differences in lipopolysaccharide-induced signaling between conventional dendritic cells and macrophages. Immunobiology 215:709–712. doi:10.1016/j.imbio.2010.05.026

    Article  Google Scholar 

  • Zelova H, Hosek J (2013) TNF-alpha signalling and inflammation: interactions between old acquaintances. Inflamm Res 62:641–651. doi:10.1007/s00011-013-0633-0

    Article  Google Scholar 

  • Zenaro E, Donini M, Dusi S (2009) Induction of Th1/Th17 immune response by Mycobacterium tuberculosis: role of dectin-1, Mannose Receptor, and DC-SIGN. J Leukoc Biol 86:1393–1401

    Article  Google Scholar 

Download references

Acknowledgments

This work has been done within the Nanomedicine Initiative funded by Fondazione Cariverona (Verona).

Conflict of interest

The authors report no conflict of interest in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Dusi.

Additional information

Laura Marongiu and Marta Donini contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marongiu, L., Donini, M., Bovi, M. et al. The inclusion into PLGA nanoparticles enables α-bisabolol to efficiently inhibit the human dendritic cell pro-inflammatory activity. J Nanopart Res 16, 2554 (2014). https://doi.org/10.1007/s11051-014-2554-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2554-4

Keywords

Navigation