Synthesis of a colloid solution of silica-coated gold nanoparticles for X-ray imaging applications

  • Yoshio Kobayashi
  • Ryoko Nagasu
  • Kyosuke Shibuya
  • Tomohiko Nakagawa
  • Yohsuke Kubota
  • Kohsuke Gonda
  • Noriaki Ohuchi
Research Paper

Abstract

This work proposes a method for fabricating silica-coated gold (Au) nanoparticles, surface modified with poly(ethylene glycol) (PEG) (Au/SiO2/PEG), with a particle size of 54.8 nm. X-ray imaging of a mouse is performed with the colloid solution. A colloid solution of 17.9 nm Au nanoparticles was prepared by reducing Au ions (III) with sodium citrate in water at 80 °C. The method used for silica-coating the Au nanoparticles was composed of surface-modification of the Au nanoparticles with (3-aminopropyl)-trimethoxysilane (APMS) and a sol–gel process. The sol–gel process was performed in the presence of the surface-modified Au nanoparticles using tetraethylorthosilicate, APMS, water, and sodium hydroxide, in which the formation of silica shells and the introduction of amino groups to the silica-coated particles took place simultaneously (Au/SiO2–NH2). Surface modification of the Au/SiO2–NH2 particles with PEG, or PEGylation of the particle surface, was performed by adding PEG with a functional group that reacted with an amino group in the Au/SiO2–NH2 particle colloid solution. A computed tomography (CT) value of the aqueous colloid solution of Au/SiO2/PEG particles with an actual Au concentration of 0.112 M was as high as 922 ± 12 Hounsfield units, which was higher than that of a commercial X-ray contrast agent with the same iodine concentration. Injecting the aqueous colloid solution of Au/SiO2/PEG particles into a mouse increased the light contrast of tissues. A CT value of the heart rose immediately after the injection, and this rise was confirmed for up to 6 h.

Keywords

Au Silica Core–shell Hydrogen storage Poly(ethylene glycol) X-ray contrast agent 

References

  1. Ayame T, Kobayashi Y, Nakagawa T, Gonda K, Takeda M, Ohuchi N (2011) Preparation of silica-coated AgI nanoparticles by an amine-free process and their X-ray imaging properties. J Ceram Soc Jpn 119:397–401CrossRefGoogle Scholar
  2. Basile L, Passirani C, Huynh NT, Bejaud J, Benoit JP, Puglisi G, Pignatello R (2012) Serum-stable, long-circulating paclitaxel-loaded colloidal carriers decorated with a new amphiphilic PEG derivative. Int J Pharmaceut 426:231–238Google Scholar
  3. Bickham P, Golembiewski J (2010) Contrast media use in the operating room. J Perianesth Nurs 25:94–103CrossRefGoogle Scholar
  4. Boellaard TN, de Haan MC, Venema HW, Stoker J (2013) Colon distension and scan protocol for CT-colonography: an overview. Eur J Radiol 82:1144–1158CrossRefGoogle Scholar
  5. Cho EC, Glaus C, Chen J, Welch MJ, Xia Y (2010) Inorganic nanoparticle-based contrast agents for molecular imaging. Trends Mol Med 16:561–573CrossRefGoogle Scholar
  6. Danila D, Johnson E, Kee P (2013) CT imaging of myocardial scars with collagen-targeting gold nanoparticles. Nanomed Nanotechnol Biol Med 9:1067–1076CrossRefGoogle Scholar
  7. de Vries A, Custers E, Lub J, van den Bosch S, Nicolay K, Grüll H (2010) Block-copolymer-stabilized iodinated emulsions for use as CT contrast agents. Biomater 31:6537–6544CrossRefGoogle Scholar
  8. Eybe T, Audinot JN, Udelhoven T, Lentzen E, El Adib B, Ziebel J, Hoffmann L, Bohn T (2013) Determination of oral uptake and biodistribution of platinum and chromium by the garden snail (Helix aspersa) employing nano-secondary ion mass-spectrometry. Chemosphere 90:1829–1838CrossRefGoogle Scholar
  9. Goh V, Gourtsoyianni S, Koh DM (2013) Functional Imaging of the Liver. Semin Ultrasound CT 34:54–65CrossRefGoogle Scholar
  10. Hallouard F, Anton N, Choquet P, Constantinesco A, Vandamme T (2010) Iodinated blood pool contrast media for preclinical X-ray imaging applications—a review. Biomater 31:6249–6268CrossRefGoogle Scholar
  11. Hallouard F, Briancon S, Anton N, Li X, Vandamme T, Fessi H (2013) Iodinated nano-emulsions as contrast agents for preclinical X-ray imaging: Impact of the free surfactants on the pharmacokinetics. Eur J Pharm Biopharm 83:54–62Google Scholar
  12. Huang YF, Ma KH, Kang KB, Zhao M, Zhang ZL, Liu YX, Wen T, Wang Q, Qiu WY, Qiu D (2013) Cor-shell plasmonic nanostructures to fine-tune long “Au nanoparticle-fluorophore” distance and radiative dynamics. Colloids Surf A 421:101–108CrossRefGoogle Scholar
  13. Ichikawa T, Motosugi U, Morisaka H, Sou H, Onohara K, Sano K, Araki T (2012) Optimal iodine dose for 3-dimensional multidetector-row CT angiography of the liver. Eur J Radiol 81:2450–2455CrossRefGoogle Scholar
  14. Jung SH, Kim KI, Ryu JH, Choi SH, Kim JB, Moon JH, Jin JH (2010) Preparation ofradioactivecore-shelltype 198Au@SiO2 nanoparticlesasa radiotracer forindustrialprocessapplications. Appl Radiat Isotopes 68:1025–1029CrossRefGoogle Scholar
  15. Kim D, Jon S (2012) Gold nanoparticles in image-guided cancer therapy. Inorg Chim Acta 393:154–164CrossRefGoogle Scholar
  16. Kim KH, Kim YS, Kuh SU, Park HS, Park JY, Chin DK, Kim KS, Cho YE (2013) Time- and dose-dependent cytotoxicities of ioxitalamate and indigocarmine in human nucleus pulposus cells. Spine J 13:564–571CrossRefGoogle Scholar
  17. Kitajima K, Ueno Y, Suzuki K, Kita M, Ebina Y, Yamada H, Senda M, Maeda T, Sugimura K (2012) Low-dose non-enhanced CT versus full-dose contrast-enhanced CT in integrated PET/CT scans for diagnosing ovarian cancer recurrence. Eur J Radiol 81:3557–3562CrossRefGoogle Scholar
  18. Knuth TE, Paxton JH, Myers D (2011) Intraosseous injection of iodinated computed tomography contrast agent in an adult blunt trauma patient. Ann Emerg Med 57:382–386CrossRefGoogle Scholar
  19. Kobayashi Y, Inose H, Nakagawa T, Gonda K, Takeda M, Ohuchi N, Kasuya A (2011) Control of shell thickness in silica-coating of Au nanoparticles and their X-ray imaging properties. J Colloid Interface Sci 358:329–333CrossRefGoogle Scholar
  20. Kobayashi Y, Ayame T, Nakagawa T, Gonda K, Ohuchi N (2012a) X-ray imaging technique using colloid solution of AgI/silica/poly(ethylene glycol) nanoparticles. Mater Focus 1:127–130CrossRefGoogle Scholar
  21. Kobayashi Y, Inose H, Nakagawa T, Gonda K, Takeda M, Ohuchi N, Kasuya A (2012b) Synthesis of Au-silica core-shell particles by a sol-gel process. Surf Eng 28:129–133CrossRefGoogle Scholar
  22. Kobayashi Y, Ayame T, Nakagawa T, Kubota Y, Gonda K, Ohuchi N (2013a) Preparation of AgI/silica/poly(ethylene glycol) nanoparticle colloid solution and X-ray imaging using it. ISRN Nanomater 2013:670402Google Scholar
  23. Kobayashi Y, Inose H, Nakagawa T, Kubota Y, Gonda K, Ohuchi N (2013b) X-ray imaging technique using colloid solution of Au/silica core-shell nanoparticles. J Nanostruct Chem 3:62CrossRefGoogle Scholar
  24. Kobayashi Y, Inose H, Nagasu R, Nakagawa T, Kubota Y, Gonda K, Ohuchi N (2013c) X-ray imaging technique using colloid solution of Au/silica/poly(ethylene glycol) nanoparticles. Mater Res Innov 17:507–514Google Scholar
  25. Lasagna-Reeves C, Gonzalez-Romero D, Barria MA, Olmedo I, Clos A, Ramanujam VMS, Urayama A, Vergara L, Kogan MJ, Soto C (2010) Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice. Biochem Biophy Res Commun 393:649–655CrossRefGoogle Scholar
  26. Li C, Zhu J (2013) Metal-enhanced fluorescenceof OG-488 doped in Au@SiO2 core-shell nanoparticles. Mater Lett 112:169–172CrossRefGoogle Scholar
  27. Liu T, Li D, Zou Y, Yang D, Li H, Wu Y, Jiang M (2010) Preparation of metal@silica core-shell particle films by interfacial self-assembly. J Colloid Interface Sci 350:58–62CrossRefGoogle Scholar
  28. Liu J, Chang MJ, Gao B, Xu ZG, Zhang HL (2013a) Sonication-assisted synthesis of multi-functional gold nanorod/silica core–shell nanostructures. J Alloys Compd 551:405–409CrossRefGoogle Scholar
  29. Liu W, Sun W, Borthwick AGL, Ni J (2013b) Comparison on aggregation and sedimentation of titanium dioxide, titanate nanotubes and titanate nanotubes-TiO2: influence of pH, ionic strength and natural organic matter. Colloids Surf A 434:319–328CrossRefGoogle Scholar
  30. Lo CL, Chou MH, Lu PL, Lo IW, Chiang YT, Hung SY, Yang CY, Lin SY, Wey SP, Lo JM, Hsiue GH (2013) The effect of PEG-5 K grafting level and particle size on tumoraccumulation and cellular uptake. Int J Pharmaceut 456:424–431Google Scholar
  31. Ma Y, Sadoqi M, Shao J (2012) Biodistribution of indocyanine green-loaded nanoparticles with surface modifications of PEG and folic acid. Int J Pharmaceut 436:25–31Google Scholar
  32. Macpherson SA, Webber GB, Moreno-Atanasio R (2012) Aggregation of nanoparticles in high ionic strength suspensions: Effect of Hamaker constant and particle concentration. Adv Powder Technol 23:478–484CrossRefGoogle Scholar
  33. Menk RH, Schültke E, Hall C, Arfelli F, Astolfo A, Rigon L, Round A, Ataelmannan K, MacDonald SR, Juurlink BHJ (2011) Gold nanoparticle labeling of cells is a sensitive method to investigate cell distribution and migration in animal models of human disease. Nanomed Nanotechnol Biolog Med 7:647–654CrossRefGoogle Scholar
  34. Mine E, Konno M (2001) Secondary particle generation at low monomer concentrations in seeded growth reaction of tetraethyl orthosilicate. J Chem Eng Jpn 34:545–548CrossRefGoogle Scholar
  35. Niidome T, Ohga A, Akiyama Y, Watanabe K, Niidome Y, Mori T, Katayama Y (2010) Controlled release of PEG chain from gold nanorods: targeted delivery to tumor. Bioorg Med Chem 18:4453–4458CrossRefGoogle Scholar
  36. Nymark P, Catalan J, Suhonen S, Jarventaus H, Birkedal R, Clausen PA, Jensen KA, Vippola M, Savolainen K, Norppa H (2013) Genotoxicity of polyvinylpyrrolidone-coated silver nanoparticles in BEAS 2B cells. Toxicol 313:38–48CrossRefGoogle Scholar
  37. Oleson TA, Sahai N, Pedersen JA (2010) Electrostatic effects on deposition of multiple phospholipid bilayers at oxide surfaces. J Colloid Interface Sci 352:327–336CrossRefGoogle Scholar
  38. Otsuka H, Nagasaki Y, Kataoka K (2012) PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliver Rev 64:246–255Google Scholar
  39. Park JA, Kim HK, Kim JH, Jeong SW, Jung JC, Lee GH, Lee J, Chang Y, Kim TJ (2010) Gold nanoparticles functionalized by gadolinium–DTPA conjugate of cysteine as a multimodal bioimaging agent. Bioorg Med Chem Lett 20:2287–2291CrossRefGoogle Scholar
  40. Park MVDZ, Neigh AM, Vermeulen JP, de la Fonteyne LJJ, Verharen HW, Briedé JJ, van Loveren H, de Jong WH (2011) The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomater 32:9810–9817CrossRefGoogle Scholar
  41. Peng C, Zheng L, Chen Q, Shen M, Guo R, Wang H, Cao X, Zhang G, Shi X (2012) PEGylated dendrimer-entrapped gold nanoparticles for in vivo blood pool and tumor imaging by computed tomography. Biomater 33:1107–1119CrossRefGoogle Scholar
  42. Schulz M, Ma-Hock L, Brill S, Strauss V, Treumann S, Gröters S, van Ravenzwaay B, Landsiedel R (2012) Investigation on the genotoxicity of different sizes of gold nanoparticles administered to the lungs of rats. Mutat Res 745:51–57CrossRefGoogle Scholar
  43. Thomsen HS (2011) Contrast media safety—an update. Eur J Radiol 80:77–82CrossRefGoogle Scholar
  44. Verburg FA, Kuhl CK, Pietsch H, Palmowski M, Mottaghy FM, Behrendt FF (2013) The influence of different contrast medium concentrations and injection protocols on quantitative and clinical assessment of FDG–PET/CT in lung cancer. Eur J Radiol 82:e617–e622CrossRefGoogle Scholar
  45. Wang Y, Li X (2012) Health risk of platinum group elements from automobile catalysts. Procedia Eng 45:1004–1009CrossRefGoogle Scholar
  46. Wu Z, Liang J, Ji X, Yang W (2011) Preparation of uniform Au@SiO2 particles by direct silica coating on citrate-capped Au nanoparticles. Colloids Surf A 392:220–224CrossRefGoogle Scholar
  47. Yoshino K, Nakamura K, Terajima Y, Kurita A, Matsuzaki T, Yamashita K, Isozaki M, Kasukawa H (2012) Comparative studies of irinotecan-loaded polyethylene glycol-modified liposomes prepared using different PEG-modification methods. Biochim Biophys Acta 1818:2901–2907CrossRefGoogle Scholar
  48. Zhang A, Tu Y, Qin S, Li Y, Zhou J, Chen N, Lu Q, Zhang B (2012) Gold nanoclusters as contrast agents for fluorescent and X-ray dual-modality imaging. J Colloid Interface Sci 372:239–244CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Yoshio Kobayashi
    • 1
  • Ryoko Nagasu
    • 1
  • Kyosuke Shibuya
    • 1
  • Tomohiko Nakagawa
    • 2
  • Yohsuke Kubota
    • 2
  • Kohsuke Gonda
    • 2
  • Noriaki Ohuchi
    • 2
  1. 1.Department of Biomolecular Functional Engineering, College of EngineeringIbaraki UniversityHitachiJapan
  2. 2.Division of Surgical Oncology, Graduate School of MedicineTohoku UniversitySendaiJapan

Personalised recommendations