Organometallic deposition of ultrasmooth nanoscale Ni film

  • András Paszternák
  • Meital Shviro
  • David Zitoun
Research Paper


Deposition of nanoscale and smooth Ni film is challenging using wet chemistry. Herein, organometallic (OM) Ni precursor yields colloidal nanoparticles which self-assemble into thin metallic film with uniform thickness on large scale. More precisely, we report on the one-pot synthesis and self-assembly of a monolayer of amorphous Ni nanoparticles on areas as large as 10 µm2, with a thickness as low as 10 nm and a roughness of 1.1 nm (RMS). Interestingly, the reactivity of different complexes, whether OM, namely Ni (η4–C8H12)2 or metal–organic, namely Ni(acac)2, orthogonally depends on whether the reaction is performed on a silicon wafer or in solution. Only the combination of phosphine and amine ligands with OM precursor effectively controls the homogeneity of the film on large scale, while phosphine ligands result in P doping of the amorphous Ni.


Nickel Electroless deposition Magnetism Thin film Coating Nanolayer 



The authors wish to thank Bar Ilan Institute of Nanotechnology and Advanced Materials (BINA) staff for XPS, SEM and TEM measurements.


  1. Bard AJ, Inzelt G, Scholz F (2012) Electrochemical Dictionary, 2nd edn. Springer, New York, pp 299–300CrossRefGoogle Scholar
  2. Barrière C, Alcaraz G, Margeat O, Fau P, Quoirin JB, Anceau C, Chaudret B (2008) Copper nanoparticles and organometallic chemical liquid deposition (OMCLD) for substrate metallization. J Mater Chem 18:3084Google Scholar
  3. Chen D-X, Pascu O, Roig A, Sanchez A (2010) Size analysis and magnetic structure of nickel nanoparticles. J Magn Magn Mater 322:3834–3840CrossRefGoogle Scholar
  4. Diab M, Moshofsky B, Jen-La Plante I, Mokari T (2011) A facile one-step approach for the synthesis and assembly of copper and copper-oxide nanocrystals. J Mater Chem 21:11626–11630Google Scholar
  5. Diab M, Volokh M, Moshofsky B, Jen-La Plante I, Flomin K, Chockler E, Mokari T (2012) A Simple Approach for the Formation of Oxides, Sulfides, and Oxide-Sulfide Hybrid Nanostructures. Isr J Chem 52:2723–2728CrossRefGoogle Scholar
  6. Elsener B, Atzei D, Krolikowski A, Rossia A (2008) Effect of phosphorus concentration on the electronic structure of nanocrystalline electrodeposited Ni–P alloys: an XPS and XAES investigation. Surf Interface Anal 40:919–926CrossRefGoogle Scholar
  7. Guo Q, Teng X, Rahman S, Yang H (2003) Patterned langmuir-blodgett films of monodisperse nanoparticles of iron oxide using soft lithography. J Am Chem Soc 125:630–631CrossRefGoogle Scholar
  8. Hou Y, Kondoh H, Ohta T, Gao S (2005) Size-controlled synthesis of nickel nanoparticles. Appl Surf Sci 241:218–222Google Scholar
  9. LaGrow AP, Ingham B, Cheong S, Williams GVM, Dotzler Ch, Toney MF, Jefferson DA, Corbos EC, Bishop PT, Cookson J, Tilley RD (2012) Synthesis, alignment, and magnetic properties of monodisperse nickel nanocubes. J Am Chem Soc 134:855–858CrossRefGoogle Scholar
  10. Luo X, Chen Y, Yue G-H, Peng D-L, Luo X (2009) Preparation of hexagonal close-packed nickel nanoparticles via a thermal decomposition approach using nickel acetate tetrahydrate as a precursor. J Alloy Compd 476:864–868CrossRefGoogle Scholar
  11. Moreau LM, Ha D-H, Bealing CR, Zhang H, Hennig RG, Robinson RD (2012) Unintended phosphorus doping of nickel nanoparticles during synthesis with TOP: a discovery through structural analysis. Nano lett 12:4530–4539CrossRefGoogle Scholar
  12. Mourdikoudis S, Simeonidis K, Vilalta-Clemente A, Tunab F, Tsiaoussis I, Angelakeris M, Dendrinou-Samara C, Kalogirou O (2009) Controlling the crystal structure of Ni nanoparticles by the use of alkylamines. J Magn Magn Mater 321:2723–2728CrossRefGoogle Scholar
  13. Panneerselvam A, Malik MA, Afzaal M, O’Brien P, Helliwell M (2007) The chemical vapor deposition of nickel phosphide or selenide thin films from a single precursor. J Am Chem Soc 130:2420–2421CrossRefGoogle Scholar
  14. Park J, Kang E, Son SU et al (2005) Monodisperse nanoparticles of Ni and NiO: synthesis, characterization, self-assembled superlattices, and catalytic applications in the suzuki coupling reaction. Adv Mater 17:429–434CrossRefGoogle Scholar
  15. Priyadarshini BG, Aich S, Chakraborty M (2011) Structural and morphological investigations on DC-magnetron-sputtered nickel films deposited on Si (100). J Mater Sci 46:2860–2873CrossRefGoogle Scholar
  16. Schlesinger M (2010) Electroless deposition of Nickel. Modern electroplating. Wiley, New York, pp 447–457CrossRefGoogle Scholar
  17. Shviro M, Zitoun D (2012) Low temperature, template-free route to nickel thin films and nanowires. Nanoscale 4:762–767CrossRefGoogle Scholar
  18. Shviro M, Zitoun D (2013) Nickel nanocrystals: fast synthesis of cubes, pyramids and tetrapods. RSC Adv 3:1380–1387CrossRefGoogle Scholar
  19. Shviro M, Paszternák A, Chelly A, Zitoun D (2013) Zigzag-shaped nickel nanowires via organometallic template-free route. J Nanopart Res 15:1823CrossRefGoogle Scholar
  20. Wang Z-H, Jin G (2004) Silicon surface modification with a mixed silanes layer to immobilize proteins for biosensor with imaging ellipsometry. Colloids Surf B Biointerfaces 34:173–177CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Chemistry and Bar Ilan Institute of Nanotechnology and Advanced Materials (BINA)Bar Ilan UniversityRamat GanIsrael
  2. 2.Institute of Materials and Environmental Chemistry, Research Centre for Natural SciencesHungarian Academy of SciencesBudapestHungary

Personalised recommendations