Skip to main content

Advertisement

Log in

Overview of nano-drugs characteristics for clinical application: the journey from the entry to the exit point

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The ever-increasing number of diseases worldwide requires comprehensive, efficient, and cost-effective modes of treatments. Among various strategies, nanomaterials fulfill most of these criteria. The unique physicochemical properties of nanoparticles have made them a premier choice as a drug or a drug delivery system for the purpose of treatment, and as bio-detectors for disease prognosis. However, the main challenge is the proper consideration of the physical properties of these nanomaterials, while developing them as potential tools for therapeutics and/or diagnostics. In this review, we focus mainly on the characteristics of nanoparticles to develop an effective and sensitive system for clinical purposes. This review will present an overview of the important properties of nanoparticles, through their journey from its route of administration until disposal from the human body after accomplishing targeted functionality. We have chosen cancer as our model disease to explain the potentiality of nano-systems for therapeutics and diagnostics in relation to several organs (intestine, lung, brain, etc.). Furthermore, we have discussed their biodegradability and accumulation probability which can cause unfavorable side effects in healthy human subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aktas Y, Yemisci M, Andrieux K, Gursoy RN, Alonso MJ, Fernandez-Megia E, Novoa-Carballal R, Quinoa E, Riguera R, Sargon MF, Celik HH, Demir AS, Hincal AA, Dalkara T, Capan Y, Couvreur P (2005) Development and brain delivery of chitosan-PEG nanoparticles functionalized with the monoclonal antibody OX26. Bioconjug Chem 16(6):1503–1511. doi:10.1021/bc050217o

    Google Scholar 

  • Alander JT, Kaartinen I, Laakso A, Patila T, Spillmann T, Tuchin VV, Venermo M, Valisuo P (2012) A review of indocyanine green fluorescent imaging in surgery. Int J Biomed Imaging 2012:940585. doi:10.1155/2012/940585

    Google Scholar 

  • Albanese A, Tang PS, Chan WC (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16. doi:10.1146/annurev-bioeng-071811-150124

    Google Scholar 

  • Alexis F, Pridgen E, Molnar LK, Farokhzad OC (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5(4):505–515. doi:10.1021/mp800051m

    Google Scholar 

  • Allen TM, Cullis PR (2013) Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 65(1):36–48. doi:10.1016/j.addr.2012.09.037

    Google Scholar 

  • Amin ML (2013) P-glycoprotein inhibition for optimal drug delivery. Drug target insights 7:27–34. doi:10.4137/DTI.S12519

    Google Scholar 

  • Azarmi S, Tao X, Chen H, Wang Z, Finlay WH, Lobenberg R, Roa WH (2006) Formulation and cytotoxicity of doxorubicin nanoparticles carried by dry powder aerosol particles. Int J Pharm 319(1–2):155–161. doi:10.1016/j.ijpharm.2006.03.052

    Google Scholar 

  • Badr CE, Tannous BA (2011) Bioluminescence imaging: progress and applications. Trends Biotechnol 29(12):624–633. doi:10.1016/j.tibtech.2011.06.010

    Google Scholar 

  • Bae YH, Park K (2011) Targeted drug delivery to tumors: myths, reality and possibility. J Control Release 153(3):198–205. doi:10.1016/j.jconrel.2011.06.001

    Google Scholar 

  • Baker GL, Gupta A, Clark ML, Valenzuela BR, Staska LM, Harbo SJ, Pierce JT, Dill JA (2008) Inhalation toxicity and lung toxicokinetics of C60 fullerene nanoparticles and microparticles. Toxicol Sci 101(1):122–131. doi:10.1093/toxsci/kfm243

    Google Scholar 

  • Banerjee D, Harfouche R, Sengupta S (2011) Nanotechnology-mediated targeting of tumor angiogenesis. Vasc Cell 3(1):3. doi:10.1186/2045-824X-3-3

    Google Scholar 

  • Barone PW, Yoon H, Ortiz-Garcia R, Zhang J, Ahn JH, Kim JH, Strano MS (2009) Modulation of single-walled carbon nanotube photoluminescence by hydrogel swelling. ACS Nano 3(12):3869–3877. doi:10.1021/nn901025x

  • Barreto JA, O’Malley W, Kubeil M, Graham B, Stephan H, Spiccia L (2011) Nanomaterials: applications in cancer imaging and therapy. Adv Mater 23(12):H18–H40. doi:10.1002/adma.201100140

    Google Scholar 

  • Batrakova EV, Li S, Reynolds AD, Mosley RL, Bronich TK, Kabanov AV, Gendelman HE (2007) A macrophage-nanozyme delivery system for Parkinson’s disease. Bioconjugate chemistry 18(5):1498–1506. doi:10.1021/bc700184b

    Google Scholar 

  • Bayindir ZS, Yuksel N (2010) Characterization of niosomes prepared with various nonionic surfactants for paclitaxel oral delivery. J Pharm Sci 99(4):2049–2060. doi:10.1002/jps.21944

    Google Scholar 

  • Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC (2014) Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66:2–25. doi:10.1016/j.addr.2013.11.009

    Google Scholar 

  • Bisht S, Mizuma M, Feldmann G, Ottenhof NA, Hong SM, Pramanik D, Chenna V, Karikari C, Sharma R, Goggins MG, Rudek MA, Ravi R, Maitra A, Maitra A (2010) Systemic administration of polymeric nanoparticle-encapsulated curcumin (NanoCurc) blocks tumor growth and metastases in preclinical models of pancreatic cancer. Mol Cancer Ther 9(8):2255–2264. doi:10.1158/1535-7163.MCT-10-0172

    Google Scholar 

  • Cai S, Vijayan K, Cheng D, Lima EM, Discher DE (2007) Micelles of different morphologies—advantages of worm-like filomicelles of PEO–PCL in paclitaxel delivery. Pharm Res 24(11):2099–2109. doi:10.1007/s11095-007-9335-z

    Google Scholar 

  • Camp ER, Wang C, Little EC, Watson PM, Pirollo KF, Rait A, Cole DJ, Chang EH, Watson DK (2013) Transferrin receptor targeting nanomedicine delivering wild-type p53 gene sensitizes pancreatic cancer to gemcitabine therapy. Cancer Gene Ther 20(4):222–228. doi:10.1038/cgt.2013.9

    Google Scholar 

  • Champion JA, Mitragotri S (2006) Role of target geometry in phagocytosis. Proc Natl Acad Sci USA 103(13):4930–4934. doi:10.1073/pnas.0600997103

    Google Scholar 

  • Chen H, Kim S, He W, Wang H, Low PS, Park K, Cheng JX (2008) Fast release of lipophilic agents from circulating PEG–PDLLA micelles revealed by in vivo forster resonance energy transfer imaging. Langmuir 24(10):5213–5217. doi:10.1021/la703570m

    Google Scholar 

  • Chipman SD, Oldham FB, Pezzoni G, Singer JW (2006) Biological and clinical characterization of paclitaxel poliglumex (PPX, CT-2103), a macromolecular polymer-drug conjugate. Int J Nanomed 1(4):375–383

    Google Scholar 

  • Cho WS, Cho M, Kim SR, Choi M, Lee JY, Han BS, Park SN, Yu MK, Jon S, Jeong J (2009) Pulmonary toxicity and kinetic study of Cy5.5-conjugated superparamagnetic iron oxide nanoparticles by optical imaging. Toxicol Appl Pharmacol 239(1):106–115. doi:10.1016/j.taap.2009.05.026

    Google Scholar 

  • Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Itty Ipe B, Bawendi MG, Frangioni JV (2007) Renal clearance of quantum dots. Nat Biotechnol 25(10):1165–1170. doi:10.1038/nbt1340

    Google Scholar 

  • Choi CH, Zuckerman JE, Webster P, Davis ME (2011) Targeting kidney mesangium by nanoparticles of defined size. Proc Natl Acad Sci USA 108(16):6656–6661. doi:10.1073/pnas.1103573108

    Google Scholar 

  • Czarnobaj K (2008) Preparation and characterization of silica xerogels as carriers for drugs. Drug Deliv 15(8):485–492. doi:10.1080/10717540802321495

    Google Scholar 

  • Davis ME (2009a) Design and development of IT-101, a cyclodextrin-containing polymer conjugate of camptothecin. Adv Drug Deliv Rev 61(13):1189–1192. doi:10.1016/j.addr.2009.05.005

  • Davis ME (2009b) The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol Pharm 6(3):659–668. doi:10.1021/mp900015y

  • Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel JD, Ribas A (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464(7291):1067–1070. doi:10.1038/nature08956

  • De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomed 3(2):133–149

    Google Scholar 

  • Decuzzi P, Godin B, Tanaka T, Lee SY, Chiappini C, Liu X, Ferrari M (2010) Size and shape effects in the biodistribution of intravascularly injected particles. J Control Release 141(3):320–327. doi:10.1016/j.jconrel.2009.10.014

    Google Scholar 

  • Di Pasqua AJ, Wallner S, Kerwood DJ, Dabrowiak JC (2009) Adsorption of the Pt(II) anticancer drug carboplatin by mesoporous silica. Chem Biodivers 6(9):1343–1349. doi:10.1002/cbdv.200900021

    Google Scholar 

  • Ding HM, Ma YQ (2013) Controlling cellular uptake of nanoparticles with pH-sensitive polymers. Sci Rep 3:2804. doi:10.1038/srep02804

    Google Scholar 

  • Elsabahy M, Wooley KL (2012) Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev 41(7):2545–2561. doi:10.1039/c2cs15327k

    Google Scholar 

  • Eom HJ, Choi J (2009) Oxidative stress of silica nanoparticles in human bronchial epithelial cell, Beas-2B. Toxicol In Vitro 23(7):1326–1332. doi:10.1016/j.tiv.2009.07.010

    Google Scholar 

  • Faraji AH, Wipf P (2009) Nanoparticles in cellular drug delivery. Bioorg Med Chem 17(8):2950–2962. doi:10.1016/j.bmc.2009.02.043

    Google Scholar 

  • Fenton PJ (1965) Applanation tonometry using one drop of an anaesthetic-fluorescein mixture. Br J Ophthalmol 49:205–208

    Google Scholar 

  • Fernandez-Suarez M, Ting AY (2008) Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Biol 9(12):929–943. doi:10.1038/nrm2531

    Google Scholar 

  • Foulds PG, Mitchell JD, Parker A, Turner R, Green G, Diggle P, Hasegawa M, Taylor M, Mann D, Allsop D (2011) Phosphorylated alpha-synuclein can be detected in blood plasma and is potentially a useful biomarker for Parkinson’s disease. FASEB J 25(12):4127–4137. doi:10.1096/fj.10-179192

    Google Scholar 

  • Gao X, Tao W, Lu W, Zhang Q, Zhang Y, Jiang X, Fu S (2006) Lectin-conjugated PEG–PLA nanoparticles: preparation and brain delivery after intranasal administration. Biomaterials 27(18):3482–3490. doi:10.1016/j.biomaterials.2006.01.038

    Google Scholar 

  • Gindy ME, Prud’homme RK (2009) Multifunctional nanoparticles for imaging, delivery and targeting in cancer therapy. Expert Opin Drug Deliv 6(8):865–878. doi:10.1517/17425240902932908

    Google Scholar 

  • Gullotti E, Yeo Y (2009) Extracellularly activated nanocarriers: a new paradigm of tumor targeted drug delivery. Mol Pharm 6(4):1041–1051. doi:10.1021/mp900090z

    Google Scholar 

  • Guterres SS, Alves MP, Pohlmann AR (2007) Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications. Drug target insights 2:147–157

    Google Scholar 

  • Harasym TO, Tardi PG, Harasym NL, Harvie P, Johnstone SA, Mayer LD (2007) Increased preclinical efficacy of irinotecan and floxuridine coencapsulated inside liposomes is associated with tumor delivery of synergistic drug ratios. Oncol Res 16(8):361–374

    Google Scholar 

  • He X, Zhang H, Ma Y, Bai W, Zhang Z, Lu K, Ding Y, Zhao Y, Chai Z (2010) Lung deposition and extrapulmonary translocation of nano-ceria after intratracheal instillation. Nanotechnology 21(28):285103. doi:10.1088/0957-4484/21/28/285103

    Google Scholar 

  • He Q, Gao Y, Zhang L, Zhang Z, Gao F, Ji X, Li Y, Shi J (2011) A pH-responsive mesoporous silica nanoparticles-based multi-drug delivery system for overcoming multi-drug resistance. Biomaterials 32(30):7711–7720. doi:10.1016/j.biomaterials.2011.06.066

    Google Scholar 

  • Herai H, Gratieri T, Thomazine JA, Bentley MV, Lopez RF (2007) Doxorubicin skin penetration from monoolein-containing propylene glycol formulations. Int J Pharm 329(1–2):88–93. doi:10.1016/j.ijpharm.2006.08.021

    Google Scholar 

  • Hong H, Zhang Y, Sun J, Cai W (2009) Molecular imaging and therapy of cancer with radiolabeled nanoparticles. Nano today 4(5):399–413. doi:10.1016/j.nantod.2009.07.001

    Google Scholar 

  • Hong C, Lee J, Zheng H, Hong SS, Lee C (2011) Porous silicon nanoparticles for cancer photothermotherapy. Nanoscale Res Lett 6(1):321. doi:10.1186/1556-276X-6-321

    Google Scholar 

  • Hu YL, Gao JQ (2010) Potential neurotoxicity of nanoparticles. Int J Pharm 394(1–2):115–121. doi:10.1016/j.ijpharm.2010.04.026

    Google Scholar 

  • Hu CM, Aryal S, Zhang L (2010) Nanoparticle-assisted combination therapies for effective cancer treatment. Ther Deliv 1(2):323–334

    Google Scholar 

  • Huang G, Zhang N, Bi X, Dou M (2008) Solid lipid nanoparticles of temozolomide: potential reduction of cardial and nephric toxicity. Int J Pharm 355(1–2):314–320. doi:10.1016/j.ijpharm.2007.12.013

    Google Scholar 

  • Immordino ML, Dosio F, Cattel L (2006) Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomed 1(3):297–315

    Google Scholar 

  • Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41(12):1578–1586. doi:10.1021/ar7002804

    Google Scholar 

  • Jarrett BR, Gustafsson B, Kukis DL, Louie AY (2008) Synthesis of 64Cu-labeled magnetic nanoparticles for multimodal imaging. Bioconjug Chem 19(7):1496–1504. doi:10.1021/bc800108v

    Google Scholar 

  • Johnston HJ, Semmler-Behnke M, Brown DM, Kreyling W, Tran L, Stone V (2010) Evaluating the uptake and intracellular fate of polystyrene nanoparticles by primary and hepatocyte cell lines in vitro. Toxicol Appl Pharmacol 242(1):66–78. doi:10.1016/j.taap.2009.09.015

    Google Scholar 

  • Jokerst JV, Lobovkina T, Zare RN, Gambhir SS (2011) Nanoparticle PEGylation for imaging and therapy. Nanomedicine (Lond) 6(4):715–728. doi:10.2217/nnm.11.19

    Google Scholar 

  • Kadam RS, Bourne DW, Kompella UB (2012) Nano-advantage in enhanced drug delivery with biodegradable nanoparticles: contribution of reduced clearance. Drug Metab Dispos Biol Fate Chem 40(7):1380–1388. doi:10.1124/dmd.112.044925

    Google Scholar 

  • Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF, Farokhzad OC (2012) Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev 41(7):2971–3010. doi:10.1039/c2cs15344k

    Google Scholar 

  • Kim DW, Kim SY, Kim HK, Kim SW, Shin SW, Kim JS, Park K, Lee MY, Heo DS (2007) Multicenter phase II trial of Genexol-PM, a novel Cremophor-free, polymeric micelle formulation of paclitaxel, with cisplatin in patients with advanced non-small-cell lung cancer. Ann Oncol 18(12):2009–2014. doi:10.1093/annonc/mdm374

  • Koc K, Anik I, Cabuk B, Ceylan S (2008) Fluorescein sodium-guided surgery in glioblastoma multiforme: a prospective evaluation. Br J Neurosurg 22(1):99–103. doi:10.1080/02688690701765524

    Google Scholar 

  • Koo H, Huh MS, Sun IC, Yuk SH, Choi K, Kim K, Kwon IC (2011) In vivo targeted delivery of nanoparticles for theranosis. Acc Chem Res 44(10):1018–1028. doi:10.1021/ar2000138

  • Krishnan V, Xu X, Barwe SP, Yang X, Czymmek K, Waldman SA, Mason RW, Jia X, Rajasekaran AK (2013) Dexamethasone-loaded block copolymer nanoparticles induce leukemia cell death and enhance therapeutic efficacy: a novel application in pediatric nanomedicine. Mol Pharm 10(6):2199–2210. doi:10.1021/mp300350e

    Google Scholar 

  • Kularatne SA, Low PS (2010) Targeting of nanoparticles: folate receptor. Methods Mol Biol 624:249–265. doi:10.1007/978-1-60761-609-2_17

    Google Scholar 

  • Kurmi BD, Kayat J, Gajbhiye V, Tekade RK, Jain NK (2010) Micro- and nanocarrier-mediated lung targeting. Expert Opin Drug Deliv 7(7):781–794. doi:10.1517/17425247.2010.492212

  • Kwatra SG, Tey HL, Ali SM, Dabade T, Chan YH, Yosipovitch G (2012) The infra-auricular fissure: a bedside marker of disease severity in patients with atopic dermatitis. J Am Acad Dermatol 66(6):1009–1010. doi:10.1016/j.jaad.2011.10.031

  • Lai SK, Wang YY, Hanes J (2009) Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev 61(2):158–171. doi:10.1016/j.addr.2008.11.002

    Google Scholar 

  • Li Z, Su K, Cheng B, Deng Y (2010) Organically modified MCM-type material preparation and its usage in controlled amoxicillin delivery. J Colloid Interface Sci 342(2):607–613. doi:10.1016/j.jcis.2009.10.073

    Google Scholar 

  • Li R, Eun JS, Lee MK (2011a) Pharmacokinetics and biodistribution of paclitaxel loaded in pegylated solid lipid nanoparticles after intravenous administration. Arch Pharm Res 34(2):331–337. doi:10.1007/s12272-011-0220-2

  • Li Y, Zhou Y, Wang HY, Perrett S, Zhao Y, Tang Z, Nie G (2011b) Chirality of glutathione surface coating affects the cytotoxicity of quantum dots. Angew Chem 50(26):5860–5864. doi:10.1002/anie.201008206

    Google Scholar 

  • Liu X, Sun J (2010) Endothelial cells dysfunction induced by silica nanoparticles through oxidative stress via JNK/P53 and NF-kappaB pathways. Biomaterials 31(32):8198–8209. doi:10.1016/j.biomaterials.2010.07.069

    Google Scholar 

  • Liu M, Zhang H, Slutsky AS (2009) Acute lung injury: a yellow card for engineered nanoparticles? J Mol Cell Biol 1(1):6–7. doi:10.1093/jmcb/mjp006

    Google Scholar 

  • Longmire M, Choyke PL, Kobayashi H (2008) Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond) 3(5):703–717. doi:10.2217/17435889.3.5.703

    Google Scholar 

  • Lv Q, Yu A, Xi Y, Li H, Song Z, Cui J, Cao F, Zhai G (2009) Development and evaluation of penciclovir-loaded solid lipid nanoparticles for topical delivery. Int J Pharm 372(1–2):191–198. doi:10.1016/j.ijpharm.2009.01.014

    Google Scholar 

  • Madani SY, Naderi N, Dissanayake O, Tan A, Seifalian AM (2011) A new era of cancer treatment: carbon nanotubes as drug delivery tools. Int J Nanomed 6:2963–2979. doi:10.2147/ijn.s16923

  • Maeda H, Bharate GY, Daruwalla J (2009) Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm 71(3):409–419. doi:10.1016/j.ejpb.2008.11.010

    Google Scholar 

  • Majoros IJ, Williams CR, Becker AC, Baker JR Jr (2009) Surface interaction and behavior of poly(amidoamine) dendrimers: deformability and lipid bilayer disruption. J Comput Theor Nanosci 6(7):1430–1436. doi:10.1166/jctn.2009.1189

    Google Scholar 

  • Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3(3):1377–1397. doi:10.3390/polym3031377

    Google Scholar 

  • Mandal S, Bakeine GJ, Krol S, Ferrari C, Clerici AM, Zonta C, Cansolino L, Ballarini F, Bortolussi S, Stella S, Protti N, Bruschi P, Altieri S (2011) Design, development and characterization of multi-functionalized gold nanoparticles for biodetection and targeted boron delivery in BNCT applications. Appl Radiat Isot 69(12):1692–1697. doi:10.1016/j.apradiso.2011.05.002

    Google Scholar 

  • Masserini M (2013) Nanoparticles for brain drug delivery. ISRN Biochem 2013:1–18. doi:10.1155/2013/238428

    Google Scholar 

  • Medina C, Santos-Martinez MJ, Radomski A, Corrigan OI, Radomski MW (2007) Nanoparticles: pharmacological and toxicological significance. Br J Pharmacol 150(5):552–558. doi:10.1038/sj.bjp.0707130

    Google Scholar 

  • Merian J, Gravier J, Navarro F, Texier I (2012) Fluorescent nanoprobes dedicated to in vivo imaging: from preclinical validations to clinical translation. Molecules 17(5):5564–5591. doi:10.3390/molecules17055564

    Google Scholar 

  • Mieog JS, Hutteman M, van der Vorst JR, Kuppen PJ, Que I, Dijkstra J, Kaijzel EL, Prins F, Lowik CW, Smit VT, van de Velde CJ, Vahrmeijer AL (2011) Image-guided tumor resection using real-time near-infrared fluorescence in a syngeneic rat model of primary breast cancer. Breast Cancer Res Treat 128(3):679–689. doi:10.1007/s10549-010-1130-6

    Google Scholar 

  • Montet X, Funovics M, Montet-Abou K, Weissleder R, Josephson L (2006) Multivalent effects of RGD peptides obtained by nanoparticle display. J Med Chem 49(20):6087–6093. doi:10.1021/jm060515m

    Google Scholar 

  • Mortimer JE, Bading JR, Colcher DM, Conti PS, Frankel PH, Carroll MI, Tong S, Poku E, Miles JK, Shively JE, Raubitschek AA (2014) Functional imaging of human epidermal growth factor receptor 2-positive metastatic breast cancer using (64)Cu-DOTA-trastuzumab PET. J Nucl Med 55(1):23–29. doi:10.2967/jnumed.113.122630

    Google Scholar 

  • Mudshinge SR, Deore AB, Patil S, Bhalgat CM (2011) Nanoparticles: emerging carriers for drug delivery. Saudi Pharm J 19(3):129–141. doi:10.1016/j.jsps.2011.04.001

    Google Scholar 

  • Murata M, Yonamine T, Tanaka S, Tahara K, Tozuka Y, Takeuchi H (2013) Surface modification of liposomes using polymer-wheat germ agglutinin conjugates to improve the absorption of peptide drugs by pulmonary administration. J Pharm Sci 102(4):1281–1289. doi:10.1002/jps.23463

    Google Scholar 

  • Muro S, Garnacho C, Champion JA, Leferovich J, Gajewski C, Schuchman EH, Mitragotri S, Muzykantov VR (2008) Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers. Mol Ther 16(8):1450–1458. doi:10.1038/mt.2008.127

    Google Scholar 

  • Nair KL, Jagadeeshan S, Nair SA, Kumar GS (2011) Biological evaluation of 5-fluorouracil nanoparticles for cancer chemotherapy and its dependence on the carrier, PLGA. Int J Nanomed 6:1685–1697. doi:10.2147/IJN.S20165

    Google Scholar 

  • Napierska D, Thomassen LC, Lison D, Martens JA, Hoet PH (2010) The nanosilica hazard: another variable entity. Part Fibre Toxicol 7(1):39. doi:10.1186/1743-8977-7-39

    Google Scholar 

  • Olivier JC (2005) Drug transport to brain with targeted nanoparticles. NeuroRx : the journal of the American Society for Experimental NeuroTherapeutics 2(1):108–119. doi:10.1602/neurorx.2.1.108

    Google Scholar 

  • Owens DE 3rd, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307(1):93–102. doi:10.1016/j.ijpharm.2005.10.010

    Google Scholar 

  • Paino IM, Marangoni VS, de Oliveira Rde C, Antunes LM, Zucolotto V (2012) Cyto and genotoxicity of gold nanoparticles in human hepatocellular carcinoma and peripheral blood mononuclear cells. Toxicol Lett 215(2):119–125. doi:10.1016/j.toxlet.2012.09.025

    Google Scholar 

  • Pan TL, Wang PW, Al-Suwayeh SA, Huang YJ, Fang JY (2012) Toxicological effects of cationic nanobubbles on the liver and kidneys: biomarkers for predicting the risk. Food Chem Toxicol 50(11):3892–3901. doi:10.1016/j.fct.2012.07.005

    Google Scholar 

  • Pandey R, Khuller GK (2005) Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis. Tuberculosis (Edinb) 85(4):227–234. doi:10.1016/j.tube.2004.11.003

    Google Scholar 

  • Paolino D, Muzzalupo R, Ricciardi A, Celia C, Picci N, Fresta M (2007) In vitro and in vivo evaluation of Bola-surfactant containing niosomes for transdermal delivery. Biomed Microdevices 9(4):421–433. doi:10.1007/s10544-007-9046-6

    Google Scholar 

  • Paolino D, Cosco D, Muzzalupo R, Trapasso E, Picci N, Fresta M (2008) Innovative bola-surfactant niosomes as topical delivery systems of 5-fluorouracil for the treatment of skin cancer. Int J Pharm 353(1–2):233–242. doi:10.1016/j.ijpharm.2007.11.037

    Google Scholar 

  • Park K (2012) Toxicity risk of nanocarriers. J Control Release 160(1):1–2. doi:10.1016/j.jconrel.2012.05.016

    Google Scholar 

  • Park JH, Lee S, Kim J-H, Park K, Kim K, Kwon IC (2008) Polymeric nanomedicine for cancer therapy. Prog Polym Sci 33(1):113–137. doi:10.1016/j.progpolymsci.2007.09.003

    Google Scholar 

  • Pavlov GM, Perevyazko IY, Okatova OV, Schubert US (2011) Conformation parameters of linear macromolecules from velocity sedimentation and other hydrodynamic methods. Methods 54(1):124–135. doi:10.1016/j.ymeth.2011.02.005

    Google Scholar 

  • Pereverzeva E, Treschalin I, Bodyagin D, Maksimenko O, Langer K, Dreis S, Asmussen B, Kreuter J, Gelperina S (2007) Influence of the formulation on the tolerance profile of nanoparticle-bound doxorubicin in healthy rats: focus on cardio- and testicular toxicity. Int J Pharm 337(1–2):346–356. doi:10.1016/j.ijpharm.2007.01.031

    Google Scholar 

  • Petros RA, DeSimone JM (2010) Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9(8):615–627. doi:10.1038/nrd2591

    Google Scholar 

  • Pittet LF, Posfay-Barbe KM (2012) Pneumococcal vaccines for children: a global public health priority. Clin Microbiol Infect 18(Suppl 5):25–36. doi:10.1111/j.1469-0691.2012.03938.x

    Google Scholar 

  • Polom K, Murawa D, Rho YS, Nowaczyk P, Hunerbein M, Murawa P (2011) Current trends and emerging future of indocyanine green usage in surgery and oncology: a literature review. Cancer 117(21):4812–4822. doi:10.1002/cncr.26087

    Google Scholar 

  • Popovici RF, Seftel EM, Mihai GD, Popovici E, Voicu VA (2011) Controlled drug delivery system based on ordered mesoporous silica matrices of captopril as angiotensin-converting enzyme inhibitor drug. J Pharm Sci 100(2):704–714. doi:10.1002/jps.22308

    Google Scholar 

  • Prausnitz MR, Langer R (2008) Transdermal drug delivery. Nat Biotechnol 26(11):1261–1268. doi:10.1038/nbt.1504

    Google Scholar 

  • Puvanakrishnan P, Park J, Diagaradjane P, Schwartz JA, Coleman CL, Gill-Sharp KL, Sang KL, Payne JD, Krishnan S, Tunnell JW (2009) Near-infrared narrow-band imaging of gold/silica nanoshells in tumors. J Biomed Opt 14(2):024044. doi:10.1117/1.3120494

    Google Scholar 

  • Qi R, Gao Y, Tang Y, He RR, Liu TL, He Y, Sun S, Li BY, Li YB, Liu G (2009) PEG-conjugated PAMAM dendrimers mediate efficient intramuscular gene expression. AAPS J 11(3):395–405. doi:10.1208/s12248-009-9116-1

    Google Scholar 

  • Rao J, Dragulescu-Andrasi A, Yao H (2007) Fluorescence imaging in vivo: recent advances. Curr Opin Biotechnol 18(1):17–25. doi:10.1016/j.copbio.2007.01.003

    Google Scholar 

  • Sadauskas E, Wallin H, Stoltenberg M, Vogel U, Doering P, Larsen A, Danscher G (2007) Kupffer cells are central in the removal of nanoparticles from the organism. Part Fibre Toxicol 4:10. doi:10.1186/1743-8977-4-10

    Google Scholar 

  • Sadauskas E, Danscher G, Stoltenberg M, Vogel U, Larsen A, Wallin H (2009) Protracted elimination of gold nanoparticles from mouse liver. Nanomed Nanotechnol Biol Med 5(2):162–169. doi:10.1016/j.nano.2008.11.002

    Google Scholar 

  • Sahay G, Alakhova DY, Kabanov AV (2010) Endocytosis of nanomedicines. J Control Release 145(3):182–195. doi:10.1016/j.jconrel.2010.01.036

    Google Scholar 

  • Saif MW, Podoltsev NA, Rubin MS, Figueroa JA, Lee MY, Kwon J, Rowen E, Yu J, Kerr RO (2010) Phase II clinical trial of paclitaxel loaded polymeric micelle in patients with advanced pancreatic cancer. Cancer Investig 28(2):186–194. doi:10.3109/07357900903179591

  • Sakhtianchi R, Minchin RF, Lee KB, Alkilany AM, Serpooshan V, Mahmoudi M (2013) Exocytosis of nanoparticles from cells: role in cellular retention and toxicity. Adv Colloid Interface Sci 201–202:18–29. doi:10.1016/j.cis.2013.10.013

    Google Scholar 

  • Sato K, Anzai J (2013) Dendrimers in layer-by-layer assemblies: synthesis and applications. Molecules 18(7):8440–8460. doi:10.3390/molecules18078440

    Google Scholar 

  • Savic R, Azzam T, Eisenberg A, Maysinger D (2006) Assessment of the integrity of poly(caprolactone)-b-poly(ethylene oxide) micelles under biological conditions: a fluorogenic-based approach. Langmuir 22(8):3570–3578. doi:10.1021/la0531998

    Google Scholar 

  • Scheinberg DA, Villa CH, Escorcia FE, McDevitt MR (2010) Conscripts of the infinite armada: systemic cancer therapy using nanomaterials. Nat Rev Clin Voncol 7(5):266–276. doi:10.1038/nrclinonc.2010.38

    Google Scholar 

  • Scodeller P, Flexer V, Szamocki R, Calvo EJ, Tognalli N, Troiani H, Fainstein A (2008) Wired-enzyme core-shell Au nanoparticle biosensor. J Am Chem Soc 130(38):12690–12697. doi:10.1021/ja802318f

  • Sengupta S, Eavarone D, Capila I, Zhao G, Watson N, Kiziltepe T, Sasisekharan R (2005) Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 436(7050):568–572. doi:10.1038/nature03794

    Google Scholar 

  • Sevick-Muraca EM (2012) Translation of near-infrared fluorescence imaging technologies: emerging clinical applications. Annu Rev Med 63:217–231. doi:10.1146/annurev-med-070910-083323

    Google Scholar 

  • Shaikh R, Raj Singh TR, Garland MJ, Woolfson AD, Donnelly RF (2011) Mucoadhesive drug delivery systems. J Pharm Bioallied Sci 3(1):89–100. doi:10.4103/0975-7406.76478

    Google Scholar 

  • Shegokar R, Al Shaal L, Mitri K (2011) Present status of nanoparticle research for treatment of tuberculosis. J Pharm Pharm Sci 14(1):100–116

  • Shinohara N, Gamo M, Nakanishi J (2011) Fullerene c60: inhalation hazard assessment and derivation of a period-limited acceptable exposure level. Toxicol Sci 123(2):576–589. doi:10.1093/toxsci/kfr192

    Google Scholar 

  • Simonetti LD, Gelfuso GM, Barbosa JC, Lopez RF (2009) Assessment of the percutaneous penetration of cisplatin: the effect of monoolein and the drug skin penetration pathway. Eur J Pharm Biopharm 73(1):90–94. doi:10.1016/j.ejpb.2009.04.016

    Google Scholar 

  • Slowing II, Vivero-Escoto JL, Wu CW, Lin VS (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60(11):1278–1288. doi:10.1016/j.addr.2008.03.012

    Google Scholar 

  • Sousa F, Mandal S, Garrovo C, Astolfo A, Bonifacio A, Latawiec D, Menk RH, Arfelli F, Huewel S, Legname G, Galla HJ, Krol S (2010) Functionalized gold nanoparticles: a detailed in vivo multimodal microscopic brain distribution study. Nanoscale 2(12):2826–2834. doi:10.1039/c0nr00345j

    Google Scholar 

  • Spuch C, Navarro C (2011) Liposomes for targeted delivery of active agents against neurodegenerative diseases (Alzheimer’s disease and Parkinson’s disease). J Drug Deliv 2011:469679. doi:10.1155/2011/469679

    Google Scholar 

  • Svenson S, Tomalia DA (2005) Dendrimers in biomedical applications–reflections on the field. Adv Drug Deliv Rev 57(15):2106–2129. doi:10.1016/j.addr.2005.09.018

    Google Scholar 

  • Taheri A, Dinarvand R, Atyabi F, Ahadi F, Nouri FS, Ghahremani MH, Ostad SN, Borougeni AT, Mansoori P (2011) Enhanced anti-tumoral activity of methotrexate-human serum albumin conjugated nanoparticles by targeting with luteinizing hormone-releasing hormone (LHRH) peptide. Int J Mol Sci 12(7):4591–4608. doi:10.3390/ijms12074591

    Google Scholar 

  • Tan X, Luo S, Wang D, Su Y, Cheng T, Shi C (2012) A NIR heptamethine dye with intrinsic cancer targeting, imaging and photosensitizing properties. Biomaterials 33(7):2230–2239. doi:10.1016/j.biomaterials.2011.11.081

    Google Scholar 

  • Taylor M, Moore S, Mourtas S, Niarakis A, Re F, Zona C, La Ferla B, Nicotra F, Masserini M, Antimisiaris SG, Gregori M, Allsop D (2011) Effect of curcumin-associated and lipid ligand-functionalized nanoliposomes on aggregation of the Alzheimer’s abeta peptide. Nanomed Nanotechnol Biol Med 7(5):541–550. doi:10.1016/j.nano.2011.06.015

    Google Scholar 

  • Te Velde EA, Veerman T, Subramaniam V, Ruers T (2010) The use of fluorescent dyes and probes in surgical oncology. Eur J Surg Oncol 36(1):6–15. doi:10.1016/j.ejso.2009.10.014

    Google Scholar 

  • Thakor AS, Gambhir SS (2013) Nanooncology: the future of cancer diagnosis and therapy. CA Cancer J Clin. doi:10.3322/caac.21199

    Google Scholar 

  • Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4(2):145–160. doi:10.1038/nrd1632

    Google Scholar 

  • Torchilin VP (2007) Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J 9(2):E128–E147. doi:10.1208/aapsj0902015

    Google Scholar 

  • Tosi G, Bortot B, Ruozi B, Dolcetta D, Vandelli MA, Forni F, Severini GM (2013) Potential use of polymeric nanoparticles for drug delivery across the blood-brain barrier. Curr Med Chem 20(17):2212–2225

    Google Scholar 

  • Trabelsi H, Azzouz I, Sakly M, Abdelmelek H (2013) Subacute toxicity of cadmium on hepatocytes and nephrocytes in the rat could be considered as a green biosynthesis of nanoparticles. Int J Nanomed 8:1121–1128. doi:10.2147/IJN.S39426

    Google Scholar 

  • Trewyn BG, Giri S, Slowing II, Lin VS (2007) Mesoporous silica nanoparticle based controlled release, drug delivery, and biosensor systems. Chem Commun (Camb) 31:3236–3245. doi:10.1039/b701744h

    Google Scholar 

  • Tseng CL, Su WY, Yen KC, Yang KC, Lin FH (2009) The use of biotinylated-EGF-modified gelatin nanoparticle carrier to enhance cisplatin accumulation in cancerous lungs via inhalation. Biomaterials 30(20):3476–3485. doi:10.1016/j.biomaterials.2009.03.010

    Google Scholar 

  • Uner M, Yener G (2007) Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomed 2(3):289–300

    Google Scholar 

  • Vila A, Gill H, McCallion O, Alonso MJ (2004) Transport of PLA-PEG particles across the nasal mucosa: effect of particle size and PEG coating density. J Control Release 98(2):231–244. doi:10.1016/j.jconrel.2004.04.026

  • Wagner V, Dullaart A, Bock AK, Zweck A (2006) The emerging nanomedicine landscape. Nat Biotechnol 24(10):1211–1217. doi:10.1038/nbt1006-1211

    Google Scholar 

  • Wang YX (2011) Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging Med Surg 1(1):35–40. doi:10.3978/j.issn.2223-4292.2011.08.03

    Google Scholar 

  • Wang CH, Huang YF, Yeh CK (2011a) Aptamer-conjugated nanobubbles for targeted ultrasound molecular imaging. Langmuir 27(11):6971–6976. doi:10.1021/la2011259

    Google Scholar 

  • Wang J, Byrne JD, Napier ME, DeSimone JM (2011b) More effective nanomedicines through particle design. Small 7(14):1919–1931. doi:10.1002/smll.201100442

    Google Scholar 

  • Wang B, He X, Zhang Z, Zhao Y, Feng W (2013) Metabolism of nanomaterials in vivo: blood circulation and organ clearance. Acc Chem Res 46(3):761–769. doi:10.1021/ar2003336

    Google Scholar 

  • Wei A, Mehtala JG, Patri AK (2012) Challenges and opportunities in the advancement of nanomedicines. J Control Release 164(2):236–246. doi:10.1016/j.jconrel.2012.10.007

  • Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H (2012) Nanoparticles as drug delivery systems. Pharmacol Rep 64(5):1020–1037

    Google Scholar 

  • Wilson PM, Danenberg PV, Johnston PG, Lenz HJ, Ladner RD (2014) Standing the test of time: targeting thymidylate biosynthesis in cancer therapy. Nat Rev Clin Oncol 11(5):282–298. doi:10.1038/nrclinonc.2014.51

    Google Scholar 

  • Wortmann A, Vohringer S, Engler T, Corjon S, Schirmbeck R, Reimann J, Kochanek S, Kreppel F (2008) Fully detargeted polyethylene glycol-coated adenovirus vectors are potent genetic vaccines and escape from pre-existing anti-adenovirus antibodies. Mol Ther 16(1):154–162. doi:10.1038/sj.mt.6300306

    Google Scholar 

  • Xie BW, Mol IM, Keereweer S, van Beek ER, Que I, Snoeks TJ, Chan A, Kaijzel EL, Lowik CW (2012) Dual-wavelength imaging of tumor progression by activatable and targeting near-infrared fluorescent probes in a bioluminescent breast cancer model. PLoS One 7(2):e31875. doi:10.1371/journal.pone.0031875

    Google Scholar 

  • Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC (2008) Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 83(5):761–769. doi:10.1038/sj.clpt.6100400

    Google Scholar 

  • Zhang C, Liu T, Su Y, Luo S, Zhu Y, Tan X, Fan S, Zhang L, Zhou Y, Cheng T, Shi C (2010) A near-infrared fluorescent heptamethine indocyanine dye with preferential tumor accumulation for in vivo imaging. Biomaterials 31(25):6612–6617. doi:10.1016/j.biomaterials.2010.05.007

    Google Scholar 

  • Zhang B, Choi JJ, Eum SY, Daunert S, Toborek M (2013) TLR4 signaling is involved in brain vascular toxicity of PCB153 bound to nanoparticles. PLoS One 8(5):e63159. doi:10.1371/journal.pone.0063159

    Google Scholar 

  • Zhu MT, Feng WY, Wang Y, Wang B, Wang M, Ouyang H, Zhao YL, Chai ZF (2009) Particokinetics and extrapulmonary translocation of intratracheally instilled ferric oxide nanoparticles in rats and the potential health risk assessment. Toxicol Sci 107(2):342–351. doi:10.1093/toxsci/kfn245

    Google Scholar 

  • Zhuang J, Kuo CH, Chou LY, Liu DY, Weerapana E, Tsung CK (2014) Optimized metal-organic-framework nanospheres for drug delivery: evaluation of small-molecule encapsulation. ACS Nano 8(3):2812–2819. doi:10.1021/nn406590q

    Google Scholar 

Download references

Acknowledgments

Support was provided in part by Indian National Science Academy (INSA), Bhabha Atomic Research Centre (BRNS), and Department of Science and Technology (DST), India. T.B., P.P.M., and S.M. wrote the manuscript. Present review article was mainly written under the guidance of S.M and P.P.M. D.L., a native English speaker also helped in the structuring and English corrections. The authors declare no conflict of interest. We are thankful to Dr. Sayandip Mukherjee, Bangalore University, India and Dr. Matthew Thomas, Novartis, UK for their valuable suggestions. The funding was provided in part by INSA, BRNS (DAE), and DST, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhra Mandal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bose, T., Latawiec, D., Mondal, P.P. et al. Overview of nano-drugs characteristics for clinical application: the journey from the entry to the exit point. J Nanopart Res 16, 2527 (2014). https://doi.org/10.1007/s11051-014-2527-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2527-7

Keywords

Navigation