Skip to main content
Log in

Surface grafting of reduced graphene oxide using nanocrystalline cellulose via click reaction

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Reduced graphene oxide (RGO) sheet was functionalized with nanocrystalline cellulose (NCC) via click coupling between azide-functionalized graphene oxide (GO-N3) and terminal propargyl-functionalized nanocrystalline cellulose (PG-NCC). First, the reactive azide groups were introduced on the surface of GO with azidation of 2-chloroethyl isocyanate-treated graphene oxide (GO-Cl). Then, the resulted compounds were reacted with PG-NCC utilizing copper-catalyzed azide-alkyne cycloaddition. During the click reaction, GO was simultaneously reduced to graphene. The coupling was confirmed by Fourier transform infrared, Raman, DEPT135, and 13C NMR spectroscopy, and the complete exfoliation of graphene in the NCC matrix was confirmed with X-ray diffraction measurement. The degree of functionalization from the gradual mass loss of RGO-NCC suggests that around 23 mass % has been functionalized covalently. The size of both NCC and GO was found to be in nanometric range, which decreased after click reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdul Khalil H, Bhat A, Ireana Yusra A (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87(2):963–979

    Article  Google Scholar 

  • Bai W, Holbery J, Li K (2009) A technique for production of nanocrystalline cellulose with a narrow size distribution. Cellulose 16(3):455–465

    Article  Google Scholar 

  • Behabtu N, Lomeda JR, Green MJ, Higginbotham AL, Sinitskii A, Kosynkin DV, Tsentalovich D, Parra-Vasquez ANG, Schmidt J, Kesselman E (2010) Spontaneous high-concentration dispersions and liquid crystals of graphene. Nat Nanotechnol 5(6):406–411

    Article  Google Scholar 

  • Brownson DA, Kampouris DK, Banks CE (2011) An overview of graphene in energy production and storage applications. J Power Sources 196(11):4873–4885

    Article  Google Scholar 

  • Bustos-Ramírez K, Martínez-Hernández AL, Martínez-Barrera G, Icaza Md, Castaño VM, Velasco-Santos C (2013) Covalently bonded chitosan on graphene oxide via redox reaction. Materials 6(3):911–926

    Article  Google Scholar 

  • Chen W, Yan L, Bangal P (2010) Chemical reduction of graphene oxide to graphene by sulfur-containing compounds. J Phys Chem C 114(47):19885–19890

    Article  Google Scholar 

  • Cho Y, Kim H, Choi Y (2013) A graphene oxide–photosensitizer complex as an enzyme-activatable theranostic agent. Chem Commun 49(12):1202–1204

    Article  Google Scholar 

  • Corrêa AC, de Morais Teixeira E, Pessan LA, Mattoso LHC (2010) Cellulose nanofibers from curaua fibers. Cellulose 17(6):1183–1192

    Article  Google Scholar 

  • Erickson K, Erni R, Lee Z, Alem N, Gannett W, Zettl A (2010) Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv Mater 22(40):4467–4472

    Article  Google Scholar 

  • Fernandez-Merino M, Guardia L, Paredes J, Villar-Rodil S, Solis-Fernandez P, Martinez-Alonso A, Tascon J (2010) Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J Phys Chem C 114(14):6426–6432

    Article  Google Scholar 

  • Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191

    Article  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500

    Article  Google Scholar 

  • Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339

    Article  Google Scholar 

  • Hwang J, Yoon T, Jin SH, Lee J, Kim TS, Hong SH, Jeon S (2013) Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process. Adv Mater 25(46):6724–6729

    Article  Google Scholar 

  • Khan A, Khan RA, Salmieri S, Le Tien C, Riedl B, Bouchard J, Chauve G, Tan V, Kamal MR, Lacroix M (2012) Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydr Polym 90(4):1601–1608

    Article  Google Scholar 

  • Kolb HC, Finn M, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40(11):2004–2021

    Article  Google Scholar 

  • Kono H, Yunoki S, Shikano T, Fujiwara M, Erata T, Takai M (2002) CP/MAS 13C NMR study of cellulose and cellulose derivatives. 1. Complete assignment of the CP/MAS 13C NMR spectrum of the native cellulose. J Am Chem Soc 124(25):7506–7511

    Article  Google Scholar 

  • Kwon J, Lee SH, Park KH, Seo DH, Lee J, Kong BS, Kang K, Jeon S (2011) Simple preparation of high-quality graphene flakes without oxidation using potassium salts. Small 7(7):864–868

    Article  Google Scholar 

  • Lalia BS, Samad YA, Hashaikeh R (2013) Nanocrystalline cellulose-reinforced composite mats for lithium-ion batteries: electrochemical and thermomechanical performance. J Solid State Electrochem 17(3):575–581

    Article  Google Scholar 

  • Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—Its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90(2):735–764

    Article  Google Scholar 

  • Li W, Yue J, Liu S (2012) Preparation of nanocrystalline cellulose via ultrasound and its reinforcement capability for poly (vinyl alcohol) composites. Ultrason Sonochem 19(3):479–485

    Article  Google Scholar 

  • Lin N, Huang J, Chang PR, Feng J, Yu J (2011) Surface acetylation of cellulose nanocrystal and its reinforcing function in poly (lactic acid). Carbohydr Polym 83(4):1834–1842

    Article  Google Scholar 

  • Liu H, Liu D, Yao F, Wu Q (2010) Fabrication and properties of transparent polymethylmethacrylate/cellulose nanocrystals composites. Bioresour Technol 101(14):5685–5692

    Article  Google Scholar 

  • Mao S, Yu K, Cui S, Bo Z, Lu G, Chen J (2011) A new reducing agent to prepare single-layer, high-quality reduced graphene oxide for device applications. Nanoscale 3(7):2849–2853

    Article  Google Scholar 

  • Moon IK, Lee J, Ruoff RS, Lee H (2010) Reduced graphene oxide by chemical graphitization. Nat Commun 1:73

    Article  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994

    Article  Google Scholar 

  • Namazi H, Jafarirad S (2008) Preparation of the new derivatives of cellulose and oligomeric species of cellulose containing magneson II chromophore. J Appl Polym Sci 110(6):4034–4039

    Article  Google Scholar 

  • Namazi H, Fathi F, Heydari A (2012) Nanoparticles based on modified polysaccharides. In: Hashim A (ed) The delivery of nanoparticles. inTech, croatia, pp 149–184

    Google Scholar 

  • Namazi H, Mosadegh M, Hayasi M (2014) New developments in polycaprolactone-layered silicate nano-biocomposites: fabrication and properties. Handbook of polymer nanocomposites processing performance and application. Springer, New York, pp 21–52

    Chapter  Google Scholar 

  • Novoselov KS, Geim AK, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I, Firsov A (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  Google Scholar 

  • Novoselov KS, Fal V, Colombo L, Gellert P, Schwab M, Kim K (2012) A roadmap for graphene. Nature 490(7419):192–200

    Article  Google Scholar 

  • Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4(4):217–224

    Article  Google Scholar 

  • Peng P, Cao X, Peng F, Bian J, Xu F, Sun R (2012) Binding cellulose and chitosan via click chemistry: synthesis, characterization, and formation of some hollow tubes. J Polym Sci Part A 50(24):5201–5210

    Article  Google Scholar 

  • Pham TA, Kumar NA, Jeong YT (2010) Covalent functionalization of graphene oxide with polyglycerol and their use as templates for anchoring magnetic nanoparticles. Synth Met 160(17):2028–2036

    Article  Google Scholar 

  • Pumera M (2011) Graphene-based nanomaterials for energy storage. Energy Environ Sci 4(3):668–674

    Article  Google Scholar 

  • Qi H, Liebert T, Meister F, Heinze T (2009) Homogenous carboxymethylation of cellulose in the NaOH/urea aqueous solution. React Funct Polym 69(10):779–784

    Article  Google Scholar 

  • Rodríguez-González C, Martínez-Hernández AL, Castaño VM, Kharissova OV, Ruoff RS, Velasco-Santos C (2012) Polysaccharide nanocomposites reinforced with graphene oxide and keratin-grafted graphene oxide. Ind Eng Chem Res 51(9):3619–3629

    Article  Google Scholar 

  • Ryu HJ, Mahapatra SS, Yadav SK, Cho JW (2013) Synthesis of click-coupled graphene sheet with chitosan: effective exfoliation and enhanced properties of their nanocomposites. Eur Polym J 49(9):2627–2634

    Article  Google Scholar 

  • Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L (2009) Water-soluble graphene covalently functionalized by biocompatible poly-l-lysine. Langmuir 25(20):12030–12033

    Article  Google Scholar 

  • Shang W, Huang J, Luo H, Chang PR, Feng J, Xie G (2013) Hydrophobic modification of cellulose nanocrystal via covalently grafting of castor oil. Cellulose 20(1):179–190

    Article  Google Scholar 

  • Shen J, Li N, Shi M, Hu Y, Ye M (2010) Covalent synthesis of organophilic chemically functionalized graphene sheets. J Colloid Interface Sci 348(2):377–383

    Article  Google Scholar 

  • Shin HJ, Kim KK, Benayad A, Yoon SM, Park HK, Jung IS, Jin MH, Jeong HK, Kim JM, Choi JY (2009) Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Funct Mater 19(12):1987–1992

    Article  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2(4):728–765

    Article  Google Scholar 

  • Soldano C, Talapatra S, Kar S (2013) Carbon nanotubes and graphene nanoribbons: potentials for nanoscale electrical interconnects. Electronics 2(3):280–314

    Article  Google Scholar 

  • Some S, Kim Y, Yoon Y, Yoo H, Lee S, Park Y, Lee H (2013) High-quality reduced graphene oxide by a dual-function chemical reduction and healing process. Scientific reports 3. doi:10.1038/srep01929

  • Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565

    Article  Google Scholar 

  • Tung VC, Allen MJ, Yang Y, Kaner RB (2009) High-throughput solution processing of large-scale graphene. Nat Nanotechnol 4(1):25–29

    Article  Google Scholar 

  • Wang G, Yang J, Park J, Gou X, Wang B, Liu H, Yao J (2008) Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 112(22):8192–8195

    Article  Google Scholar 

  • Wang Y, Li Y, Tang L, Lu J, Li J (2009) Application of graphene-modified electrode for selective detection of dopamine. Electrochem Commun 11(4):889–892

    Article  Google Scholar 

  • Wang Z, Ge Z, Zheng X, Chen N, Peng C, Fan C, Huang Q (2012) Polyvalent DNA–graphene nanosheets “click” conjugates. Nanoscale 4(2):394–399

    Article  Google Scholar 

  • Wu Z-S, Zhou G, Yin L-C, Ren W, Li F, Cheng H-M (2012) Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1(1):107–131

    Article  Google Scholar 

  • Xiao X, Miller PR, Narayan RJ, Brozik SM, Wheeler DR, Brener I, Wang J, Burckel DB, Polsky R (2014) Simultaneous detection of dopamine, ascorbic acid and uric acid at lithographically-defined 3D graphene electrodes. Electroanalysis 26(1):52–56

    Article  Google Scholar 

  • Yadav M, Rhee K, Jung I, Park S (2013) Eco-friendly synthesis, characterization and properties of a sodium carboxymethyl cellulose/graphene oxide nanocomposite film. Cellulose 20(2):687–698

    Article  Google Scholar 

  • Yadollahi M, Namazi H (2013) Synthesis and characterization of carboxymethyl cellulose/layered double hydroxide nanocomposites. J Nanopart Res 15(4):1–9

    Article  Google Scholar 

  • Yang Q, Pan X, Clarke K, Li K (2011) Covalent functionalization of graphene with polysaccharides. Ind Eng Chem Res 51(1):310–317

    Article  Google Scholar 

  • Zhu C, Guo S, Fang Y, Dong S (2010) Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4(4):2429–2437

    Article  Google Scholar 

  • Zhu Z, Garcia-Gancedo L, Flewitt AJ, Xie H, Moussy F, Milne WI (2012) A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene. Sensors 12(5):5996–6022

    Article  Google Scholar 

Download references

Acknowledgments

The authors greatly acknowledge the University of Tabriz and Research Center for Pharmaceutical Nanotechnology (RCPN) for the financial supports of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Namazi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabiri, R., Namazi, H. Surface grafting of reduced graphene oxide using nanocrystalline cellulose via click reaction. J Nanopart Res 16, 2474 (2014). https://doi.org/10.1007/s11051-014-2474-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2474-3

Keywords

Navigation