Journal of Nanoparticle Research

, 16:2465 | Cite as

A systematic study of antibacterial silver nanoparticles: efficiency, enhanced permeability, and cytotoxic effects

  • Manuel I. Azócar
  • Laura Tamayo
  • Nelson Vejar
  • Grace Gómez
  • Xiangrong Zhou
  • George Thompsom
  • Enrique Cerda
  • Marcelo J. Kogan
  • Edison Salas
  • Maritza A. Paez
Research Paper

Abstract

We report here a systematic study of the antibacterial behavior of silver nanoparticles coated with fatty acids (oleic: AgNP-O, linoleic: AgNP-L, and palmitic acids: AgNP-P) in water. We have found remarkable differences in their capability to penetrate bacteria cell over a broader range of particle size of ~4–96 nm compared to previously reported work, and a variable toxicity depending on the particles size. Our results indicate that silver nanoparticles stabilized with oleic acid showed clear advantages in antibacterial activity, penetration inside the bacteria cells, cytotoxicity, time effectiveness, efficiency, and stability against light.

Keywords

Silver Nanoparticles Antibacterial Cytotoxicity Permeability Environmental and health effects 

Supplementary material

11051_2014_2465_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1558 kb)

References

  1. Beer C, Foldjerg R, Hayashi Y, Sutherland D, Autrup H (2012) Toxicity of silver nanoparticles: nanoparticle or silver ion? Toxicol Lett 208:286. doi:10.1016/j.toxlet.2011.11.002 CrossRefGoogle Scholar
  2. Chamakuraa K, Perez-Ballesteroa R, Luob Z, Bashirc S, Liu (2011) Comparison of Silver Nanoparticles Against Common Chemical Disinfectants. J Colloids Surf B: biointerfaces 84(1):88–96. doi:10.1016/j.colsurfb.2010.12.020 CrossRefGoogle Scholar
  3. Cioffi N, Rai M (eds) (2012) Nano-antimicrobials, progress and prospects. Springer, HeidelbergGoogle Scholar
  4. Elechiguerra J, Burt J, Morones J, Camacho-Bragado A, Gao X, Lara H, Yacaman M (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3:6. doi:10.1186/1477-3155-3-6 CrossRefGoogle Scholar
  5. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52(4):662–668. doi:10.1002/1097-4636(20001215)52:4<662:AID-JBM10>3.0.CO;2-31 CrossRefGoogle Scholar
  6. Henglein A (1998) Colloidal silver nanoparticles: photochemical preparation and interaction with O2, CCl4, and some metal ions. Chem Mater 10:444–450CrossRefGoogle Scholar
  7. Kong H, Jang J (2008) Antibacterial properties of novel poly(methyl methacrylate) nanofiber containing silver nanoparticles. Langmuir 24(5):2051–2056. doi:10.1021/la703085e CrossRefGoogle Scholar
  8. Kvitek L, Panacek A, Soukupova J, Kolar M, Vecerova R, Prucek R, Holecova M, Zboril R (2008) Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C 112(15):5825–5834. doi:10.1021/jp711616v CrossRefGoogle Scholar
  9. Li XA, Lenhart JJ, Walker H (2010) Dissolution-accompanied aggregation kinetics of silver nanoparticles. Langmuir 26(22):16690–16698. doi:10.1021/la101768n CrossRefGoogle Scholar
  10. Li XA, Lenhart JJ, Walker HW (2012) Aggregation kinetics and dissolution of coated silver nanoparticles. Langmuir 28(2):1095–1104. doi:10.1021/la202328n CrossRefGoogle Scholar
  11. Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PKH, Chiu JF, Che CM (2007) Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem 12(4):527–534CrossRefGoogle Scholar
  12. Lowry G, Gregory K, Apte S, Lead J (2012) Transformations of nanomaterials in the environment. Environ Sci Technol 46:6893–6899. doi:10.1021/es300839e CrossRefGoogle Scholar
  13. Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12(5):1531–1551. doi:10.1007/s11051-010-9900-y CrossRefGoogle Scholar
  14. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346–2353. doi:10.1088/0957-4484/16/10/059 CrossRefGoogle Scholar
  15. Suresh A, Pelletier D, Wang W, Morrell-Falvey J, Gu B, Doktycz M (2012) Cytotoxicity induced by engineered silver nanocrystallites is dependent on surface coatings and cell types. Langmuir 28(5):2727–2735. doi:10.1021/la2042058 CrossRefGoogle Scholar
  16. Taglietti A, Diaz-Fernandez YA, Amato E, Cucca L, Dacarro G, Grisoli P, Necchi V, Pallavicini P, Pasotti L, Patrini M (2012) Antibacterial activity of glutathione-coated silver nanoparticles against gram positive and gram negative bacteria. Langmuir 28(21):8140–8148. doi:10.1021/la3003838 CrossRefGoogle Scholar
  17. Tamayo LA, Zapata PA, Vejar ND, Azócar MI, Gulppi MA, Zhou X, Thompson GE, Rabagliati FM, Páez MA (2014) Release of silver and copper nanoparticles from polyethylene nanocomposites and their penetration into Listeria monocytogenes. Mat Sci Eng C 40:24–31. doi:10.1016/j.msec.2014.03.037 CrossRefGoogle Scholar
  18. Wang W, Efrima S, Regev O (1998) Directing oleate stabilized nanosized silver colloids into organic phases. Langmuir 14(3):602–610. doi:10.1021/la9710177 CrossRefGoogle Scholar
  19. Wang W, Chen X, Efrima S (1999) Silver nanoparticles capped by long-chain unsaturated carboxylates. J. Phys Chem B 103(34):7238–7246. doi:10.1021/jp991101q CrossRefGoogle Scholar
  20. Wu J, Hou SY, Ren DC, Mather PT (2009) Antimicrobial properties of nanostructured hydrogel webs containing silver. Biomacromolecules 10(9):2686–2693. doi:10.1021/bm900620w CrossRefGoogle Scholar
  21. Xiu ZM, Ma J, Alvarez PJJ (2011) Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ Sci Technol 45(20):9003–9008. doi:10.1021/es201918f CrossRefGoogle Scholar
  22. Xiu Z, Zhang Q, Puppala HL, Colvin VL, Alvarez PJ (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. NanoLetters 12(8):4271–4275CrossRefGoogle Scholar
  23. Xu X, Brownlow W, Kyriacou S, Wan Q, Viola J (2004) Real-time probing of membrane transport in living microbial cells using single nanoparticle optics and living cell imaging. Biochemistry 43(32):10400–10413. doi:10.1021/bi036231a CrossRefGoogle Scholar
  24. Zapata PA, Tamayo L, Páez M, Cerda E, Azócar I, Rabagliati FM (2011) Nanocomposites based on polyethylene and nanosilver particles produced by metallocenic “in situ” polymerization: synthesis, characterization, and antimicrobial behavior. Eur Polym J 47(8):1541. doi:10.1016/j.eurpolymj.2011.05.008 CrossRefGoogle Scholar
  25. Zhang Y-M, Rock CO (2008) Membrane lipid homeostasis in bacteria. Nat Rev Microbiol 6:222–233. doi:10.1038/nrmicro1839 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Manuel I. Azócar
    • 1
  • Laura Tamayo
    • 1
  • Nelson Vejar
    • 1
  • Grace Gómez
    • 1
  • Xiangrong Zhou
    • 2
  • George Thompsom
    • 2
  • Enrique Cerda
    • 3
  • Marcelo J. Kogan
    • 4
  • Edison Salas
    • 1
    • 4
  • Maritza A. Paez
    • 1
  1. 1.Facultad de Química y BiologíaUniversidad de Santiago de ChileSantiagoChile
  2. 2.Corrosion and Protection Centre, School of MaterialsThe University of ManchesterManchesterEngland, UK
  3. 3.Departamento de Física, Facultad de CienciasUniversidad de Santiago de Santiago de ChileSantiagoChile
  4. 4.Facultad de Ciencias Químicas y FarmacéuticasUniversidad de ChileSantiagoChile

Personalised recommendations