Engineering the surface of hybrid organic–inorganic films with orthogonal grafting of oxide nanoparticles

  • Alessandra Pinna
  • Barbara Lasio
  • Davide Carboni
  • Salvatore Marceddu
  • Luca Malfatti
  • Plinio Innocenzi
Research Paper

Abstract

Superparamagnetic iron oxide nanoparticles of magnetite have been grafted on the surface of a hybrid organic–inorganic film prepared using an organically modified alkoxide, 3-glycidoxypropyltrimethoxysilane, as precursor. A solventless synthesis of the hybrid films at high pH has been employed and the surface chemistry of the deposited films has been processed by controlling the aging time of the sol. The films have been characterized by FTIR, Raman and UV spectroscopy and grazing incidence X-ray diffraction. Films prepared with fresh sols have shown a mixed presence of epoxides and hydroxyls on the surface, which enabled the successful grafting of the iron oxide nanoparticles. Films from aged sols, which contain only hydroxyls, have failed to bind the iron particles but have instead shown the capability of grafting ceria nanoparticles. This method has, therefore, allowed a direct grafting of nanoparticles on the hybrid surface without any post-synthetic functionalization step. Moreover, the phase transition induced in iron oxide nanoparticles by means of a laser beam has been exploited to pattern the film surface creating different domains of magnetite and hematite.

Keywords

Iron oxide nanoparticles Magnetite Hybrid materials Surface interactions 

Supplementary material

11051_2014_2463_MOESM1_ESM.doc (2.1 mb)
Figure S1 AFM Topology Imaging of GPTMS-SPIONs 0d (a) and 6d (b); GPTMS-Ceria 0d (c) and 6d (d). (DOC 2201 kb)

References

  1. Aboulaich A, Lorret O, Boury B, Mutin PH (2009) Surfactant free organo soluble silica titania and silica nanoparticles. Chem Mater 21:2577–2579CrossRefGoogle Scholar
  2. Aboulaich A, Boury B, Mutin PH (2010) Reactive and organosoluble anatase nanoparticles by a surfactant-free non hydrolytic synthesis. Chem Mater 22:4519–4521CrossRefGoogle Scholar
  3. Ahliah IW, Zainal AA, Puteh R (2013) Transparent nanocrystallite silver for antibacterial coating. J Nano Mater 2013:1–6Google Scholar
  4. Alonso B, Massiot D, Valentini M, Kidchob T, Innocenzi P (2008) Design of hybrid organic–inorganic materials through their structure control: the case of epoxy bearing alkoxides. J Non-Cryst Solids 354:1615–1626CrossRefGoogle Scholar
  5. Aronniemi M, Saino J, Lahtinen J (2008) Characterization and gas-sensing behavior of an iron oxide thin film prepared by atomic layer deposition. Thin Solid Films 516:6110–6115CrossRefGoogle Scholar
  6. Carboni D, Pinna A, Malfatti L, Innocenzi P (2014) Smart tailoring of the surface chemistry in GPTMS hybrid organic–inorganic films. New J Chem 38:1635–1640CrossRefGoogle Scholar
  7. Chernyshova IV, Hochella MF Jr, Madden AS (2007) Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition. Phys Chem Chem Phys 9:1736–1750CrossRefGoogle Scholar
  8. Colombo M, Carregal-Romero S, Casula MF, Gutierrez L, Morales MP, Böhm IB, Heverhagen JT, Prosperi D, Parak WJ (2012) Biological applications of magnetic nanoparticles. Chem Soc Rev 41:4306–4334CrossRefGoogle Scholar
  9. de Faria DLA, Venancio Silva S, de Oliveira MT (1997) Raman microspectroscopy of some iron oxides and oxyhydroxides. J Raman Spectrosc 28:873–878CrossRefGoogle Scholar
  10. Guo L, Huang Q, Li X, Yang S (2001) Iron nanoparticles: synthesis and applications in surface enhanced Raman scattering and electrocatalysis. Phys Chem Chem Phys 3:1661–1665CrossRefGoogle Scholar
  11. Innocenzi P (2003) Infrared spectroscopy of sol–gel derived silica-based films: a spectra-microstructure overview. J Non-Cryst Solids 316:309–319CrossRefGoogle Scholar
  12. Innocenzi P, Figus C, Kidchob T, Valentini M, Alonso B, Takahashi M (2009) Sol–gel reactions of 3-glycidoxypropyltrimethoxysilane in a highly basic aqueous solution. Dalton Trans 42:9146–9152CrossRefGoogle Scholar
  13. Jubb AM, Allen HC (2010) Vibrational spectroscopic characterization of Hematite, Maghemite, and Magnetite thin films produced by vapor deposition. ACS Appl Mater Interfaces 2:2804–2812CrossRefGoogle Scholar
  14. Kanga YS, Lee DK, Stroeve P (1998) FTIR and UV–vis spectroscopy studies of Langmuir–Blodgett films of stearic acid/γ-Fe2O3 nanoparticles. Thin Solid Films 327–329:541–544CrossRefGoogle Scholar
  15. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110CrossRefGoogle Scholar
  16. Lewis IR, Edwards HGM (2011) Handbook of Raman spectroscopy: from the research laboratory to the process line, vol 28., Practical spectroscopic series. CRC Press, New York, pp 149–153 ago 2001Google Scholar
  17. Li Y-S, Church JS, Woodhead AL (2012) Infrared and Raman spectroscopic studies on iron oxide magnetic nano-particles and their surface modifications. J Magn Magn Mater 324:1543–1550CrossRefGoogle Scholar
  18. Lutterotti L (2010) Total pattern fitting for the combined size–strain–stress–texture determination in thin film diffraction. Nucl Instr Methods Phys Res B 268:334–340CrossRefGoogle Scholar
  19. McBride JR, Hass KC, Poindexter BD, Weber WH (1994) Raman and X-ray studies of Ce1-XREXO2-Y where RE = La, Pr, Nd, Eu, Gd and Tb. J Appl Phys 76:2435–2441CrossRefGoogle Scholar
  20. Noguera CJ, Goniakowski J (2013) Polarity in oxide nano-objects. Chem Rev 113:4073–4105CrossRefGoogle Scholar
  21. Pichon BP, Buchwalter P, Carcel C, Cattoën X, Wong Chi Man M, Begin-Colin S (2012) Assembling of magnetic iron oxide nanoparticles controlled by self-assembled monolayers of functional coordinating or chelating trialkoxysilanes. Open Surf Sci J 4:35–41CrossRefGoogle Scholar
  22. Pinna A, Figus C, Lasio B, Piccinini M, Malfatti L, Innocenzi P (2012) Release of ceria nanoparticles grafted on hybrid organic–inorganic films for biomedical application. ACS Appl Mater Interfaces 4:3916–3922CrossRefGoogle Scholar
  23. Shebanova ON, Lazor P (2003) Raman spectroscopic study of magnetite (FeFe2O4): a new assignment for the vibrational spectrum. J Solid State Chem 174:424–430CrossRefGoogle Scholar
  24. Takahashi M, Figus C, Kidchob T, Enzo S, Casula M, Valentini M, Innocenzi P (2009) Self-organized nanocrystalline organosilicates in organic-inorganic hybrid films. Adv Mater 21:9146–9152CrossRefGoogle Scholar
  25. Tartaj P, del Puerto MM, Veintemillas-Verdaguer S, González-Carreño T, Serna CJ (2003) The preparation of magnetic nanoparticles for application in biomedicine. J Phys D 36:R182–R197CrossRefGoogle Scholar
  26. Tran N, Mir A, Mallik D, Sinha A, Nayar S, Webster T (2010) Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus. Int J Nanomed 5:277–283Google Scholar
  27. Xu C, Qu X (2014) Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. Asia Mater 6:16–e90Google Scholar
  28. Xu QF, Wang JN (2010) Superhydrophobic and trans-parent coatings prepared by selfassembly of dual-sized silica particles. Front Mater Sci China 4:180–188CrossRefGoogle Scholar
  29. Yu S, Chow GM (2004) Carboxyl group (–COOH) functionalized ferrimagnetic iron oxide nanoparticles for potential bio-applications. J Mater Chem 14:2781–2786CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Alessandra Pinna
    • 1
  • Barbara Lasio
    • 1
  • Davide Carboni
    • 1
  • Salvatore Marceddu
    • 2
  • Luca Malfatti
    • 1
  • Plinio Innocenzi
    • 1
  1. 1.Laboratorio di Scienza dei Materiali e Nanotecnologie, LMNT-D.A.D.UUniversità di Sassari and CR-INSTMSassariItaly
  2. 2.Istituto di Scienze delle Produzioni Alimentari (ISPA), CNRSassariItaly

Personalised recommendations