Skip to main content
Log in

Visible-light-induced photodegradation of methylene blue using ZnO/CdS heteronanostructures synthesized through a novel thermal decomposition approach

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

ZnO/CdS heteronanostructures with different shell thicknesses (20–45 nm) have been successfully synthesized by a novel thermal decomposition approach, and the synthesis involves three steps. In the first step, ZnO nanorods were synthesized by homogeneous precipitation method. Then, the surface of ZnO nanorods was functionalized using citric acid as the surface-modifying agent. Finally, the cadmium sulfide (CdS) shell was deposited on the surface-modified ZnO nanorods by the thermal decomposition of cadmium acetate and thiourea in ethylene glycol at 180 °C. The ZnO/CdS heteronanostructures were characterized using X-ray diffraction, infrared spectroscopy, thermal gravimetric analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS), and photoluminescence spectroscopy. SEM and TEM results indicate the deposition of CdS shell on the ZnO nanorods, and DRS results show blue shift of CdS band gap absorption with respect to bulk CdS. PL results show evidence for synergistic interaction between ZnO and CdS. The ZnO/CdS heteronanostructures were explored as catalyst for visible-light-induced photocatalytic degradation of methylene blue in an aqueous solution. The ZnO/CdS samples show higher photocatalytic activity for the degradation of methylene blue compared with pure ZnO nanorods and CdS nanoparticles. The possible mechanism for the formation of CdS shell on the ZnO nanorods and the mechanism for photodegradation of methylene blue are explained in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 1
Scheme 2
Fig. 11
Scheme 3
Fig. 12

Similar content being viewed by others

References

  • Becker J, Raghupathi KR, Pierre J, Zhao D, Koodali RT (2011) Tuning of the crystallite and particle sizes of ZnO nanocrystalline materials in solvothermal synthesis and their photocatalytic activity for dye degradation. J Phys Chem C 115:3844–13850. doi:10.1021/jp2038653

    Google Scholar 

  • Behera D, Acharya BS (2008) Nano-star formation in Al-doped ZnO thin film deposited by dip-dry method and its characterization using atomic force microscopy, electron probe microscopy, photoluminescence and laser Raman spectroscopy. J Lumin 128:1577–1586. doi:10.1016/j.jlumin.2008.03.006

    Article  Google Scholar 

  • Bishop LM, Yeager JC, Chen X, Wheeler JN, Torelli MD, Benson MC, Burke SD, Pedersen JA, Hamers RJ (2012) A citric acid-derived ligand for modular functionalization of metal oxide surfaces via “click” chemistry. Langmuir 28:1322–1329. doi:10.1021/la204145t

    Article  Google Scholar 

  • Bitenc M, Crnjak OZ (2009) Synthesis and characterization of crystalline hexagonal bipods of zinc oxide. Mater Res Bull 44:381–387. doi:10.1016/j.materresbull.2008.05.005

    Article  Google Scholar 

  • Bitenc M, Podbrscek P, Crnjak OZ, Cleveland MA, Paramo JA, Peters RM, Strzhemechny YM (2009) Correlation between morphology and defect luminescence in precipitated ZnO nanorod powders. Cryst Growth Des 9:997–1001. doi:10.1021/cg8008078

    Article  Google Scholar 

  • Brus L (1986) Electronic wave functions in semiconductor clusters: experiment and theory. J Phys Chem 90:2555–2560

    Article  Google Scholar 

  • Chang SY, Liu L, Asher SA (1994) Preparation and properties of tailored morphology, monodisperse colloidal silica-cadmium sulfide nanocomposites. J Am Chem Soc 116:6739–6744

    Article  Google Scholar 

  • Chen S, Zhang H, Yu X, Liu W, Wang J, Liu Q, Chen L (2010) Preparation, characterization and activity evaluation of heterojunction ZrTi2O6/TiO2 photocatalyst. Mater Chem Phys 124:1057–1064. doi:10.1016/j.matchemphys.2010.08.031

  • Chong X, Li L, Yan X, Hu D, Li H, Wang Y (2012) Synthesis, characterization and room temperature photoluminescence properties of Al doped ZnO nanorods. Physica E 44:1399–1405. doi:10.1016/j.physe.2012.03.001

  • Cui Q, Liu C, Wu F, Yue W, Qiu Z, Zhang H, Gao F, Shen W, Wang M (2013) Performance improvement in polymer/ZnO nanoarray hybrid solar cells by formation of ZnO/CdS-core/shell heterostructures. J Phys Chem C 117:5626–5637. doi:10.1021/jp312728t

    Article  Google Scholar 

  • Fan D, Thomas PJ, O’Brien P (2007) Deposition of CdS and ZnS thin films at the water/toluene interface. J Mater Chem 17:1381–1386. doi:10.1039/b616004b

    Article  Google Scholar 

  • Fang F, Zhao DX, Li BH, Zhang ZZ, Zhang JY, Shen DZ (2008) The enhancement of ZnO nanowalls photoconductivity induced by CdS nanoparticle modification. Appl Phys Lett 93:233115/1–233115/3. doi:10.1063/1.3045952

    Google Scholar 

  • Feng Y, Feng N, Wei Y, Zhang G (2014) An in situ gelatin-assisted hydrothermal synthesis of ZnO-reduced graphene oxide composites with enhanced photocatalytic performance under ultraviolet and visible light. RSC Adv 4:7933–7943. doi:10.1039/c3ra46417b

    Article  Google Scholar 

  • Galoppini E, Rochford J, Chen H, Saraf G, Lu Y, Hagfeldt A, Boschloo G (2006) Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells. J Phys Chem B 110:16159–16161. doi:10.1021/jp062865q

    Article  Google Scholar 

  • Gao T, Li Q, Wang T (2005) Sonochemical synthesis, optical properties, and electrical properties of core/shell-type ZnO nanorod/CdS nanoparticle composites. Chem Mater 17:887–892. doi:10.1021/cm0485456

    Article  Google Scholar 

  • Geng J, Jia XD, Zhu JJ (2011) Sonochemical selective synthesis of ZnO/CdS core/shell nanostructures and their optical properties. CrystEngComm 13:193–198. doi:10.1039/c0ce00180e

    Article  Google Scholar 

  • Ghosh CR, Paria S (2012) Core/shell nanoparticles: classes, properties, synthesis, mechanisms, characterization, and applications. Chem Rev 112:2373–2433. doi:10.1021/cr100449n

    Article  Google Scholar 

  • Guerguerian G, Elhordoy F, Pereyra CJ, Marotti RE, Martin F, Leinen D, Ramos B, Jose R, Dalchiele EA (2011) ZnO nanorod/CdS nanocrystal core/shell-type heterostructures for solar cell applications. Nanotechnology 22:505401/1–505401/9. doi:10.1088/0957-4484/22/50/505401

    Article  Google Scholar 

  • Hu J, Fan Y, Pei Y, Qiao M, Fan K, Zhang X, Zong B (2013) Shape effect of ZnO crystals as cocatalyst in combined reforming-hydrogenolysis of glycerol. ACS Catal 3:2280–2287. doi:10.1021/cs400526s

    Article  Google Scholar 

  • Huang X, Wang M, Willinger MG, Shao L, Su DS, Meng XM (2012) Assembly of three- dimensional hetero- epitaxial ZnO/ZnS core/shell nanorod and single crystalline hollow ZnS nanotube arrays. ACS Nano 6:7333–7339. doi:10.1021/nn3024514

    Article  Google Scholar 

  • Imali AM, Vicki HG (2010) Citric acid adsorption on TiO2 nanoparticles in aqueous suspensions at acidic and circumneutral pH: surface coverage, surface speciation, and its impact on nanoparticle–nanoparticle interactions. J Am Chem Soc 132:14986–14994. doi:10.1021/ja106091q

    Article  Google Scholar 

  • Kadir RA, Li Z, Sadek AZ, Abdul RR, Zoolfakar AS, Field MR, Ou JZ, Chrimes AF, Kalantar-zadeh K (2014) Electrospun granular hollow SnO2 nanofibers hydrogen gas sensors operating at low temperatures. J Phys Chem C 118:3129–3139. doi:10.1021/jp411552z

    Article  Google Scholar 

  • Khanchandani S, Kundu S, Patra A, Ganguli AK (2012) Shell thickness dependent photocatalytic properties of ZnO/CdS core-shell nanorods. J Phys Chem C 116:23653–23662. doi:10.1021/jp3083419

    Article  Google Scholar 

  • Khatamian M, Saket OM, Haghighi M (2014) Photocatalytic hydrogen generation over CdS–metalosilicate composites under visible light irradiation. New J Chem. doi:10.1039/c3nj01348k

    Google Scholar 

  • Kim YJ, Yoo J, Kwon BH, Hong YJ, Lee CH, Yi GC (2008) Position-controlled ZnO nanoflower arrays grown on glass substrates for electron emitter application. Nanotechnology 19:315202/1–315202/5. doi:10.1088/0957-4484/19/31/315202

    Google Scholar 

  • Kim H, Tak Y, Senthil K, Joo J, Jeon S, Yong K (2009) Novel heterostructure of CdS nanoparticle/WO3 nanowhisker: synthesis and photocatalytic properties. J Vac Sci Technol, B 27:2182–2186. doi:10.1116/1.3212913

    Article  Google Scholar 

  • Kuo TJ, Lin CN, Kuo CL, Huang MH (2007) Growth of ultralong ZnO nanowires on silicon substrates by vapor transport and their use as recyclable photocatalysts. Chem Mater 19:5143–5147. doi:10.1021/cm071568a

    Article  Google Scholar 

  • Latthe SS, An S, Jin S, Yoon SS (2013) High energy electron beam irradiated TiO2 photoanodes for improved water splitting. J Mater Chem 1:13567–13575. doi:10.1039/c3ta13481d

    Article  Google Scholar 

  • Li C, Ahmed T, Ma M, Edvinsson T, Zhu J (2013a) A facile approach to ZnO/CdS nanoarrays and their photocatalytic and photoelectrochemical properties. Appl Catal B 138–139:175–183. doi:10.1016/j.apcatb.2013.02.042

    Article  Google Scholar 

  • Li H, Yao C, Meng L, Sun H, Huang J, Gong Q (2013b) Photoelectrochemical performance of hydrogenated ZnO/CdS core-shell nanorod arrays. Electrochim Acta 108:45–50. doi:10.1016/j.electacta.2013.06.074

    Article  Google Scholar 

  • Li L, Liu X, Zhnag Y, Salvador PA, Rohrer GS (2013c) Heterostructured (Ba, Sr)TiO3/TiO2 core/shell photocatalysts: influence of processing and structure on hydrogen production. Int J Hydrogen Energy 38:6948–6959. doi:10.1016/j.ijhydeene.2013.03.130

    Article  Google Scholar 

  • Li L, Salvador PA, Rohrer GS (2014) Photocatalysts with internal electric fields. Nanoscale 6:24–42. doi:10.1039/c3nr03998f

    Article  Google Scholar 

  • Liao L, Lu HB, Li JC, He H, Wang DF, Fu DJ, Liu C, Zhang WF (2007) Size dependence of gas sensitivity of ZnO nanorods. J Phys Chem C 111:1900–1903. doi:10.1021/jp065963k

    Article  Google Scholar 

  • Misra M, Kapur P, Ghanshyam C, Singla ML (2013) ZnO@CdS core-shell thin film: fabrication and enhancement of exciton life time by CdS nanoparticle. J Mater Sci 24:3800–3804. doi:10.1007/s10854-013-1321-0

    Google Scholar 

  • Nie T, Chen ZG, Wu Y, Guo Y, Zhang J, Fan Y, Yang X, Jiang Z, Zou J (2012) Fabrication of crystal α-Si3N4/Si–SiOx core-shell/Au–SiOx peapod-like axial double heterostructures for optoelectronic applications. Nanotechnology 23:305603/1–305603/9. doi:10.1088/0957-4484/23/30/305603

  • Ozgur U, Alivov YI, Liu C, Teke A, Reshchikov MA, Dogan S, Avrutin V, Cho SJ, Morkoc H (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98:041301/1–041301/103. doi:10.1063/1.1992666

    Article  Google Scholar 

  • Panda SK, Chakrabarti S, Satpati B, Satyam PV, Chaudhuri S (2004) Optical and microstructural characterization of CdS–ZnO nanocomposite thin films prepared by sol-gel technique. J Phys D Appl Phys 37:628–633. doi:10.1088/0022-3727/37/4/014

    Article  Google Scholar 

  • Pawar RC, Lee CS (2014) Single-step sensitization of reduced graphene oxide sheets and CdS nanoparticles on ZnO nanorods as visible-light photocatalysts. Appl Catal B 144:57–65. doi:10.1016/j.apcatb.2013.06.022

    Article  Google Scholar 

  • Rahman QI, Ahmad M, Misra SK, Lohani MB (2013) Hexagonal ZnO nanorods assembled flowers for photocatalytic dye degradation: growth, structural and optical properties. Superlattices Microstruct 64:495–506. doi:10.1016/j.spmi.2013.10.011

    Article  Google Scholar 

  • Ramachandra TV, Rishabh J, Krishnadas G (2011) Hotspots of solar potential in India. Renew Sust Energy Rev 15:3178–3186. doi:10.1016/j.rser.2011.04.007

    Article  Google Scholar 

  • Ren L, Li Y, Hou J, Zhao X, Pan C (2014) Preparation and enhanced photocatalytic activity of TiO2 nanocrystals with internal pores. ACS Appl Mater Interfaces 6:1608–1615. doi:10.1021/am404457u

    Article  Google Scholar 

  • Schladt TD, Koll K, Pruefer S, Bauer H, Natalio F, Dumele O, Raidoo R, Weber S, Wolfrum U, Schreiber LM, Radsak MP, Schild H, Tremel W (2012) Multifunctional superparamagnetic MnO@SiO2 core/shell nanoparticles and their application for optical and magnetic resonance Imaging. J Mater Chem 22:9253–9262. doi:10.1039/c2jm15320c

    Article  Google Scholar 

  • Singh J, Im J, Whitten JE, Soares JW, Steeves DM (2009) Encapsulation of zinc oxide nanorods and nanoparticles. Langmuir 25:9947–9953. doi:10.1021/la9010983

    Article  Google Scholar 

  • Surendar T, Santosh K, Syam K, Vishnu S (2014) Fe-doped and -mediated graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight. J Mater Chem A 2:6772–6780. doi:10.1039/c3ta15358d

    Article  Google Scholar 

  • Tak Y, Kim H, Lee D, Yong K (2008) Type-II CdS nanoparticle-ZnO nanowire heterostructure arrays fabricated by a solution process: enhanced photocatalytic activity. Chem Comm 38:4585–4587. doi:10.1039/b810388g

    Article  Google Scholar 

  • Tena ZR, Katty A, Bastide S, Levy CC (2007) Annealing effects on the physical properties of electrodeposited ZnO/CdSe core–shell nanowire arrays. Chem Mater 19:1626–1632. doi:10.1021/cm062390f

    Article  Google Scholar 

  • Vadivel MA, Sonawane RS, Kale BB, Apte SK, Kulkarni AV (2001) Microwave-solvothermal synthesis of nanocrystalline cadmium sulfide. Mater Chem Phys 71:98–102

    Article  Google Scholar 

  • Villani M, Calestani D, Lazzarini L, Zanotti L, Mosca R, Zappettini A (2012) Extended functionality of ZnO nanotetrapods by solution-based coupling with CdS nanoparticles. J Mater Chem 22:5694–5699. doi:10.1039/c2jm16164h

    Article  Google Scholar 

  • Wahab R, Kim YS, Lee K, Shin HS (2010) Fabrication and growth mechanism of hexagonal zinc oxide nanorods via solution process. J Mater Sci 45:2967–2973. doi:10.1007/s10853-010-4294-x

    Article  Google Scholar 

  • Wang ZL (2004) Zinc oxide nanostructures: growth, properties and applications. J Phys Condens Matter 16:R829–R858. doi:10.1088/0953-8984/16/25/R01

    Google Scholar 

  • Wang Y, Sun X, Li H (2010) Synthesis, characterization and room temperature photoluminescence properties of briers-like ZnO nanoarchitectures. Mater Sci Eng, B 167:177–181. doi:10.1016/j.mseb.2010.02.001

    Article  Google Scholar 

  • Wang C, Cao M, Wang P, Ao Y (2013a) Preparation, characterization of CdS-deposited graphene-carbon nanotubes hybrid photocatalysts with enhanced photocatalytic activity. Mater Lett 108:336–339. doi:10.1016/j.matlet.2013.06.102

  • Wang Q, Jia W, Liu B, Dong A, Gong X, Li C, Jing P, Li Y, Xu G, Zhang J (2013b) Hierarchical structure based on Pd(Au) nanoparticles grafted onto magnetite cores and double layered shells: enhanced activity for catalytic applications. J Mater Chem 1:12732–12741. doi:10.1039/c3ta12814h

    Article  Google Scholar 

  • Wu YL, Tok AIY, Boey FYC, Zeng XT, Zhang XH (2007) Surface modification of ZnO nanocrystals. Appl Surf Sci 253:5473–5479. doi:10.1016/j.apsusc.2006.12.091

    Article  Google Scholar 

  • Wu Z, Zhang Y, Zheng J, Lin X, Chen X, Huang B, Wang H, Huang K, Li S, Kang J (2011) An all-inorganic type-II heterojunction array with nearly full solar spectral response based on ZnO–ZnSe core-shell nanowires. J Mater Chem 21:6020–6026. doi:10.1039/c0jm03971c

    Article  Google Scholar 

  • Xia Y, Yin L (2013) Core-shell structured α-Fe2O3@TiO2 nanocomposites with improved photocatalytic activity in the visible light region. Phys Chem Chem Phys 15:18627–18634. doi:10.1039/c3cp53178c

    Article  Google Scholar 

  • Xiao Q, Xiao C (2009) Surface-defect-states photoluminescence in CdS nanocrystals prepared by one-step aqueous synthesis method. Appl Surf Sci 255:7111–7114. doi:10.1016/j.apsusc.2008.12.032

    Article  Google Scholar 

  • Xiao Q, Si Z, Zhang J, Xiao C, Tan X (2008) Photoinduced hydroxyl radical and photocatalytic activity of samarium-doped TiO2 nanocrystalline. J Hazard Mater 150:62–67. doi:10.1016/j.jhazmat.2007.04.045

    Article  Google Scholar 

  • Xiao FX, Miao J, Liu B (2014) Layer-by-Layer self-assembly of CdS quantum dots/graphene nanosheets hybrid films for photoelectrochemical and photocatalytic applications. J Am Chem Soc 136:1559–1569. doi:10.1021/ja411651e

    Article  Google Scholar 

  • Xu F, Lu Y, Xie Y, Liu Y (2009a) Synthesis and photoluminescence of assembly-controlled ZnO architectures by aqueous chemical growth. J Phys Chem C 113:1052–1059. doi:10.1021/jp808456r

    Article  Google Scholar 

  • Xu F, Volkov V, Zhu Y, Bai H, Rea A, Valappil NV, Su W, Gao X, Kuskovsky IL, Matsui H (2009b) Long electron-hole separation of ZnO–CdS core–shell quantum dots. J Phys Chem C 113:19419–19423. doi:10.1021/jp903813h

    Article  Google Scholar 

  • Yang G, Yang B, Xiao T, Yan Z (2013) One-step solvothermal synthesis of hierarchically porous nanostructured CdS/TiO2 heterojunction with higher visible light photocatalytic activity. Appl Surf Sci 283:402–410. doi:10.1016/j.apsusc.2013.06.122

    Article  Google Scholar 

  • Yu SH, Yang J, Han ZH, Zhou Y, Yang RY, Qian YT, Zhang YH (1999) Controllable synthesis of nanocrystalline CdS with different morphologies and particle sizes by a novel solvothermal process. J Mater Chem 9:1283–1287

    Article  Google Scholar 

  • Yu J, Dai G, Huang B (2009) Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanotube arrays. J Phys Chem C 113:16394–16401. doi:10.1021/jp905247j

    Article  Google Scholar 

  • Yu J, Wang B (2010) Effect of calcination temperature on morphology and photoelectrochemical properties of anodized titanium dioxide nanotube arrays. Appl Catal B 94:295–302. doi:10.1016/j.apcatb.2009.12.003

  • Zhai J, Wang D, Peng L, Lin Y, Li X, Xie T (2010) Visible-light-induced photoelectric gas sensing to formaldehyde based on CdS nanoparticles/ZnO heterostructures. Sens Actuators B 147:234–240. doi:10.1016/j.snb.2010.03.003

    Article  Google Scholar 

  • Zhang CF, Qiu LG, Ke F, Zhu YJ, Yuan YP, Xu GS, Jiang X (2013) A novel magnetic recyclable photocatalyst based on a core–shell metal-organic framework Fe3O4@MIL-100(Fe) for the decolorization of methylene blue dye. J Mater Chem A 1:14329–14334. doi:10.1039/c3ta13030d

    Article  Google Scholar 

  • Zhao W, Bai Z, Ren A, Guo B, Wu C (2010) Sunlight photocatalytic activity of CdS modified TiO2 loaded on activated carbon fibers. Appl Surf Sci 256:3493–3498. doi:10.1016/j.apsusc.2009.12.062

    Article  Google Scholar 

  • Zhong K, Xia J, Li HH, Liang CL, Liu P, Tong YX (2009) Morphology evolution of one-dimensional-based ZnO nanostructures synthesized via electrochemical corrosion. J Phys Chem C 113:15514–15523. doi:10.1021/jp9017794

    Article  Google Scholar 

  • Zhu J, Yang D, Geng J, Chen D, Jiang Z (2008) Synthesis and characterization of bamboo-like CdS/TiO2 nanotubes composites with enhanced visible-light photocatalytic activity. J Nanopart Res 10:729–736. doi:10.1007/s11051-007-9301-z

    Article  Google Scholar 

  • Zhu YF, Zhou GH, Ding HY, Liu AH, Lin YB, Dong YW (2011) Synthesis and characterization of highly-ordered ZnO/PbS core/shell heterostructures. Superlattices Microstruct 50:549–556. doi:10.1016/j.spmi.2011.08.017

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the Ministry of Human Resource Development, Government of India is gratefully acknowledged. We are thankful to the Institute Instrumentation Centre, Indian Institute of Technology Roorkee for providing the XRD, TGA, FE-SEM, and TEM facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Jeevanandam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kandula, S., Jeevanandam, P. Visible-light-induced photodegradation of methylene blue using ZnO/CdS heteronanostructures synthesized through a novel thermal decomposition approach. J Nanopart Res 16, 2452 (2014). https://doi.org/10.1007/s11051-014-2452-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2452-9

Keywords

Navigation