Skip to main content

Titanium dioxide nanoparticles activate IL8-related inflammatory pathways in human colonic epithelial Caco-2 cells

Abstract

Nanosized titanium dioxide (TiO2) particles are widely used as food additive or coating material in products of the food and pharmaceutical industry. Studies on various cell lines have shown that TiO2 nanoparticles (NPs) induced the inflammatory response and cytotoxicity. However, the influences of TiO2 NPs’ exposure on inflammatory pathways in intestinal epithelial cells and their differentiation have not been investigated so far. This study demonstrates that TiO2 NPs with particle sizes ranging between 5 and 10 nm do not affect enterocyte differentiation but cause an activation of inflammatory pathways in the human colon adenocarcinoma cell line Caco-2. 5 and 10 nm NPs’ exposures transiently induce the expression of ICAM1, CCL20, COX2 and IL8, as determined by quantitative PCR, whereas larger particles (490 nm) do not. Further, using nuclear factor (NF)-κB reporter gene assays, we show that NP-induced IL8 mRNA expression occurs, in part, through activation of NF-κB and p38 mitogen-activated protein kinase pathways.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Astarci E, Sade A, Cimen I et al (2012) The NF-κB target genes ICAM-1 and VCAM-1 are differentially regulated during spontaneous differentiation of Caco-2 cells. FEBS J 279:2966–2986. doi:10.1111/j.1742-4658.2012.08677.x

    Article  Google Scholar 

  • Barone F, De Berardis B, Bizzarri L et al (2011) Physico-chemical characteristics and cyto-genotoxic potential of ZnO and TiO 2 nanoparticles on human colon carcinoma cells. J Phys Conf Ser 304:012047. doi:10.1088/1742-6596/304/1/012047

    Article  Google Scholar 

  • Chalew TEA, Schwab KJ (2013) Toxicity of commercially available engineered nanoparticles to Caco-2 and SW480 human intestinal epithelial cells. Cell Biol Toxicol 29:101–116. doi:10.1007/s10565-013-9241-6

    Article  Google Scholar 

  • Chantret I, Barbat A, Dussaulx E et al (1988) Epithelial polarity, villin expression, and enterocytic differentiation of cultured human colon carcinoma cells: a survey of twenty cell lines. Cancer Res 48:1936–1942

    Google Scholar 

  • Chen P, Migita S, Kanehira K et al (2011) Development of sensor cells using NF-κB pathway activation for detection of nanoparticle-induced inflammation. Sensors 11:7219–7230. doi:10.3390/s110707219

    Article  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium extraction. Anal Biochem 162:156–159. doi:10.1006/abio.1987.9999

    Article  Google Scholar 

  • Elia G, De Marco A, Rossi A, Santoro G (1996) Inhibition of HSP70 expression by calcium ionophore A23187 in human cells. An effect independent of the acquisition of DNA-binding by the heat shock transcription factor. J Biol Chem 271:16111–16118. doi:10.1074/jbc.271.27.16111

    Article  Google Scholar 

  • Flandez M, Guilmeau S, Blache P, Augenlicht LH (2008) KLF4 regulation in intestinal epithelial cell maturation. Exp Cell Res 314:3712–3723. doi:10.1016/j.yexcr.2008.10.004

    Article  Google Scholar 

  • Gerloff K, Albrecht C, Boots AW et al (2009) Cytotoxicity and oxidative DNA damage by nanoparticles in human intestinal Caco-2 cells. Nanotoxicol 3:355–364. doi:10.3109/17435390903276933

    Article  Google Scholar 

  • Gerloff K, Fenoglio I, Carella E et al (2012) Distinctive toxicity of TiO2 rutile/anatase mixed phase nanoparticles on Caco-2 cells. Chem Res Toxicol 25:646–655. doi:10.1021/tx200334k

    Article  Google Scholar 

  • Hsu RYC, Chan CHF, Spicer JD et al (2011) LPS-induced TLR4 signaling in human colorectal cancer cells increases beta1 integrin-mediated cell adhesion and liver metastasis. Cancer Res 71:1989–1998. doi:10.1158/0008-5472.CAN-10-2833

    Article  Google Scholar 

  • Jijon HB, Panenka WJ, Madsen KL, Parsons HG (2002) MAP kinases contribute to IL-8 secretion by intestinal epithelial cells via a posttranscriptional mechanism. Am J Physiol Cell Physiol 283:C31–C41. doi:10.1152/ajpcell.00113.2001

    Article  Google Scholar 

  • Kagnoff MF, Eckmann L (1997) Perspectives series: host/pathogen interactions epithelial cells as sensors for microbial infection. J Clin Invest 100:6–10. doi:10.1172/JCI119522

    Article  Google Scholar 

  • Kaiserlian D, Rigal D, Abello J, Revillard JP (1991) Expression, function and regulation of the intercellular adhesion molecule-1 (ICAM-1) on human intestinal epithelial cell lines. Eur J Immunol 21:2415–2421. doi:10.1002/eji.1830211018

    Article  Google Scholar 

  • Kim S, Domon-Dell C, Wang Q et al (2002) PTEN and TNF-α regulation of the intestinal-specific Cdx-2 homeobox gene through a PI3K, PKB/Akt, and NF-κB–dependent pathway. Gastroenterology 123:1163–1178. doi:10.1053/gast.2002.36043

    Article  Google Scholar 

  • Koch S, Nusrat A (2012) The life and death of epithelia during inflammation: lessons learned from the gut. Annu Rev Pathol 7:35–60. doi:10.1146/annurev-pathol-011811-120905

    Article  Google Scholar 

  • Koeneman BA, Zhang Y, Westerhoff P et al (2009) Toxicity and cellular responses of intestinal cells exposed to titanium dioxide. Cell Biol Toxicol 26:225–238. doi:10.1007/s10565-009-9132-z

    Article  Google Scholar 

  • Lomer MCE, Harvey RSJ, Evans SM et al (2001) Efficacy and tolerability of a low microparticle diet in a double blind, randomized, pilot study in Crohn’s disease. Eur J Gastroenterol Hepatol 13:101–106. doi:10.1097/00042737-200102000-00003

    Article  Google Scholar 

  • Lomer MCE, Thompson RPH, Powell JJ (2002) Fine and ultrafine particles of the diet: influence on the mucosal immune response and association with Crohn’s disease. Proc Nutr Soc 61:123–130. doi:10.1079/PNS2001134

    Article  Google Scholar 

  • Lomer MCE, Hutchinson C, Volkert S et al (2004) Dietary sources of inorganic microparticles and their intake in healthy subjects and patients with Crohn’s disease. Brit J Nutr 92:947. doi:10.1079/BJN20041276

    Article  Google Scholar 

  • Müzes G, Molnar B, Tulassay Z, Sipos F (2012) Changes of the cytokine profile in inflammatory bowel diseases. World J Gastroenterol 18:5848–5861. doi:10.3748/wjg.v18.i41.5848

    Article  Google Scholar 

  • Naik S, Kelly EJ, Meijer L et al (2001) Absence of toll-like receptor 4 explains endotoxin hyporesponsiveness in human intestinal epithelium. J Pediatr Gastr Nutr 32:449–453. doi:10.1097/00005176-200104000-00011

    Article  Google Scholar 

  • Nanthakumar NN, Fusunyan RD, Sanderson I, Walker W (2000) Inflammation in the developing human intestine: A possible pathophysiologic contribution to necrotizing enterocolitis. Proc Nat Acad Sci USA 97:6043–6048. doi:10.1073/pnas.97.11.6043

    Article  Google Scholar 

  • Nogueira CM, De Azevedo WM, Dagli MLZ et al (2012) Titanium dioxide induced inflammation in the small intestine. World J Gastroenterol 18:4729–4735. doi:10.3748/wjg.v18.i34.4729

    Article  Google Scholar 

  • Noonan EJ, Place RF, Giardina C, Hightower LE (2007) Hsp70B’ regulation and function. Cell Stress Chaperon 12:393–402. doi:10.1379/CSC-278e.1

    Article  Google Scholar 

  • Parikh AA, Salzman AL, Kane CD et al (1997) IL-6 production in human intestinal epithelial cells following stimulation with IL-1 beta is associated with activation of the transcription factor NF-kappa B. J Surg Res 69:139–144. doi:10.1006/jsre.1997.5061

    Article  Google Scholar 

  • Pelaez M, Nolan NT, Pillai SC et al (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B 125:331–349. doi:10.1016/j.apcatb.2012.05.036

    Article  Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36. doi:10.1093/nar/30.9.e36

    Article  Google Scholar 

  • Powell JJ, Thoree V, Pele LC (2007) Dietary microparticles and their impact on tolerance and immune responsiveness of the gastrointestinal tract. Br J Nutr 98(Suppl 1):S59–S63. doi:10.1017/S0007114507832922

    Google Scholar 

  • Rossi A, Coccia M, Trotta E et al (2012) Regulation of cyclooxygenase-2 expression by heat: a novel aspect of heat shock factor 1 function in human cells. PloS one 7:e31304. doi:10.1371/journal.pone.0031304

  • Rupp F, Haupt M, Klostermann H et al (2010) Multifunctional nature of UV-irradiated nanocrystalline anatase thin films for biomedical applications. Acta Biomater 6:4566–4577. doi:10.1016/j.actbio.2010.06.021

    Article  Google Scholar 

  • Santoro MG (2000) Heat shock factors and the control of the stress response. Biochem Pharmacol 59:55–63. doi:10.1016/S0006-2952(99)00299-3

    Article  Google Scholar 

  • Schottelius AJG, Baldwin AS Jr (1999) The role for transcription factor NF-k B in intestinal inflammation. Int J Colorectal Dis 14:18–28. doi:10.1007/s003840050178

    Article  Google Scholar 

  • Schrand AM, Rahman MF, Hussain SM et al (2010) Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:544–568. doi:10.1002/wnan.103

    Article  Google Scholar 

  • Sierro F, Dubois B, Coste a et al (2001) Flagellin stimulation of intestinal epithelial cells triggers CCL20-mediated migration of dendritic cells. Proc Nat Acad Sci USA 98:13722–13727. doi:10.1073/pnas.241308598

    Article  Google Scholar 

  • Singer II, Kawka DW, Schloemann S et al (1998) Cyclooxygenase 2 is induced in colonic epithelial cells in inflammatory bowel disease. Gastroenterology 115:297–306. doi:10.1016/S0016-5085(98)70196-9

    Article  Google Scholar 

  • Van De Walle J, Hendrickx A, Romier B et al (2010) Inflammatory parameters in Caco-2 cells: effect of stimuli nature, concentration, combination and cell differentiation. Toxicol In Vitro 24:1441–1449. doi:10.1016/j.tiv.2010.04.002

    Article  Google Scholar 

  • Wang D, Dubois RN (2010) The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene 29:781–788. doi:10.1038/onc.2009.421

    Article  Google Scholar 

  • Wang D, Dubois RN, Richmond A (2009) The role of chemokines in intestinal inflammation and cancer. Curr Opin Pharmacol 9:688–696. doi:10.1016/j.coph.2009.08.003

    Article  Google Scholar 

  • Weir A, Westerhoff P, Fabricius L et al (2012) Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46:2242–2250. doi:10.1021/es204168d

    Article  Google Scholar 

  • Yin ZF, Wu L, Yang HG, Su YH (2013) Recent progress in biomedical applications of titanium dioxide. Phys Chem Chem Phys 15:4844–4858. doi:10.1039/c3cp43938k

    Article  Google Scholar 

  • Yu Y, De Waele C, Chadee K (2001) Calcium-dependent interleukin-8 gene expression in T84 human colonic epithelial cells. Inflamm Res 50:220–226. doi:10.1007/s000110050747

    Article  Google Scholar 

  • Yu T, Chen X, Zhang W et al (2012) Krüppel-like factor 4 regulates intestinal epithelial cell morphology and polarity. PLoS One 7:e32492. doi:10.1371/journal.pone.0032492

    Article  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank Silvia Kaschner and Angela Back for their expert technical assistance. This work was supported by the German Federal Ministry of Food and Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Klempt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 230 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krüger, K., Cossais, F., Neve, H. et al. Titanium dioxide nanoparticles activate IL8-related inflammatory pathways in human colonic epithelial Caco-2 cells. J Nanopart Res 16, 2402 (2014). https://doi.org/10.1007/s11051-014-2402-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2402-6

Keywords

  • Titanium dioxide nanoparticles
  • Inflammation
  • NF-κB
  • IL8
  • Intestinal epithelial cells
  • Nanomedicine