Skip to main content
Log in

In situ functionalized fluorescent nanoparticles for efficient receptor coupling

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

An oligoethylene glycol-based propargyl phosphonate was applied to functionalize the surface of LaPO4:Ce,Tb nanoparticles in situ during the particle synthesis. The application of the surface modification reagent did not alter either size (5–7 nm in diameter) or morphology of the nanocrystalline core, but provided efficient anchor groups for subsequent coupling of a carbohydrate model receptor under mild reaction conditions. The biofunctionalization efficiency was quantified by thermogravimetric analysis and confirmed by a photometric assay. A calculation-based estimation suggested an average number of about 20 biomarkers per nanoparticles and a surface density of about 1 marker per 6 nm−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bernadi A, Jiménez-Barbero J, Casnati A, De Castro C, Darbre T, Fieschi F, Finne J, Funken H, Jaeger K-E, Lahmann M, Lindhorst TK, Marradi M, Messner P, Molinaro A, Murphy PV, Nativi C, Oscarson S, Penadés S, Peri F, Pieters RJ, Renaudet O, Reymond J-L, Richichi B, Rojo J, Sansone F, Schäffer C, Turnbull WB, Velasco-Torrijos T, Vidal S, Vincent S, Wennekes T, Zuilhof H, Iberty A (2013) Multivalent glycoconjugates as anti-pathogenic agents. Chem Soc Rev 42:4709–4727

    Article  Google Scholar 

  • Berowitz PT, Baum K (1981) Reactions of 2-fluoro-2-nitro-1,3-propandiol, p-toluenesulfonates. J Org Chem 46:3816–3819

    Article  Google Scholar 

  • Bo Z, Zhang X, Yi X, Yang M, Shen J, Rehn Y, Xi S (1997) The synthesis of dendrimers bearing alkyl chains and their behavior at air-water interface. Polym Bull 38:257–264

    Article  Google Scholar 

  • Boduszek B (1997) Aminophosphonic acids bearing heterocyclic moiety. Part 4. Synthesis of 2-pyridyl and 4-pyridylmethyl(amino)phosphonic acids. Phosphorus Sulfur Silicon 122:21–32

    Article  Google Scholar 

  • Bouzigues C, Gacoin T, Alexandrou A (2011) Biological applications of rare-earth based nanoparticles. ACS Nano 5:8488–8505

    Article  Google Scholar 

  • Chen JC, Luo WQ, Wang HD, Xiang JM, Jin HF, Chen F, Cai ZW (2010) A versatile method for the preparation of end-functional polymers onto SiO2 nanoparticles by combination of surface-initiated ATRP and Huisgen [3 + 2] cycloaddition. Appl Surf Sci 256:2490–2495

    Article  Google Scholar 

  • Deussen H-J, Danielsen S, Breinholt J, Borchert TV (2000) A novel biotinylated suicide inhibitor for directed molecular evolution of lipolytic enzymes. Bioorg Med Chem 8:507–513

    Article  Google Scholar 

  • Erathodiyil N, Ying JY (2011) Functionalization of inorganic nanoparticles for bioimaging applications. Acc Chem Res 44:925–935

    Article  Google Scholar 

  • Gao W, Dickinson L, Grozinger C, Morin FG, Reven L (1996) Self-assembled monolayers of alkylphosphonic acids on metal oxides. Langmuir 12:6429–6435

    Article  Google Scholar 

  • Gruar RI, Tighe CJ, Muir J, Kittler JT, Wodjak M, Kenyon AJ, Darr JA (2012) Continous hydrothermal synthesis of surface-functionalised nanophosphors for biological imaging. RSC Adv 2:10037–10047

    Article  Google Scholar 

  • He H, Gao C (2011) Click chemistry on nano-surfaces. Curr Org Chem 15:3667–3691

    Article  Google Scholar 

  • Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R (2013) Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites—a review. Prog Polymer Sci 38:1232–1261

    Article  Google Scholar 

  • Kohler B, Bohmann K, Hoheisel W, Haase M, Haubold S, Meyer C, Heidelberg T (2006) Production and use of in situ-modified nanoparticles. US2006/0063155 A1

  • Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40:2004–2021

    Article  Google Scholar 

  • Lallana E, Riguera R, Fernandez-Megia E (2011) Reliable and efficient procedures for the conjugation of biomolecules through Huisgen azide-alkyne cycloaddition. Angew Chem Int Ed 50:8794–8804

    Article  Google Scholar 

  • Lane SM, Monot J, Petit M, Tellier C, Bujoli B, Talham DR (2008) Poly(dG) spacers lead to increased surface coverage of DNA probes: an XPS study of oligonucleotide binding to zirconium phosphate modified surfaces. Langmuir 24:7394–7399

    Article  Google Scholar 

  • Lehmann O, Meyssamy H, Kompe K, Schnablegger H, Haase M (2003) Synthesis, growth and Er3+ luminescence of lanthanide phosphate nanoparticles. J Phys Chem B 107:7449–7453

    Article  Google Scholar 

  • Liang L, Astruc D (2011) The copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) ‘click’ reaction and its applications. An overview. Coord Chem Rev 255:2933–2945

    Article  Google Scholar 

  • Lin M, Zhao Y, Wang SQ, Liu M, Duan ZF, Chen YM, Li F, Xu F, Lu TJ (2012) Recent advances in synthesis and surface modification of lanthanide-doped upconversion nanoparticles for biomedical applications. Biotechnol Adv 30:1551–1561

    Article  Google Scholar 

  • Liu Y, Tu D, Zhu H, Chen X (2013) Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications. Chem Soc Rev 42:6924–6958

    Article  Google Scholar 

  • Lu X, Lv X, Sun Z, Zheng Y (2008) Nanocomposites of poly(L-lactide) and surface-grafted TiO2 nanoparticles: synthesis and characterization. Eur Polymer J 44:2476–2481

    Article  Google Scholar 

  • Mader HS, Kele P, Saleh SM, Wolfbeis OS (2010) Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging. Curr Opinion Chem Biol 14:582–596

    Article  Google Scholar 

  • Moni L, Rossetti S, Marra A, Dondoni A (2010) Immobilization of calix[4]arene-based glycoclusters on TiO2 nanoparticles via Cu(I)-catalyzed azide-alkyne coupling. Chem Commun 46:475–477

    Article  Google Scholar 

  • Nguan HS, Heidelberg T, Hashim R, Tiddy GJT (2010) Quantitative analysis of the packing of alkyl glycosides: a comparison of linear and branched alkyl chains. Liq Cryst 37:1205–1213

    Article  Google Scholar 

  • Norberg O, Deng L, Yan M, Ramström O (2009) Photo-click immobilization of carbohydrates on polymeric surfaces—a quick method to functionalize surfaces for biomolecular recognition studies. Bioconjugate Chem 20:2364–2370

    Article  Google Scholar 

  • Queffelec C, Petit M, Janvier P, Knight DA, Bujoli B (2012) Surface modification using phosphonic acids and esters. Chem Rev 112:3777–3807

    Article  Google Scholar 

  • Riwotzki K, Meyssamy H, Kornowski A, Haase M (2000) Liquid-phase synthesis of doped nanoparticles: Colloids of luminescing LaPO4:Eu and CePO4:Tb particles with a narrow particle size distribution. J Phys Chem B 104:2824–2828

    Article  Google Scholar 

  • Riwotzki K, Meyssamy H, Schnablegger H, Kornowski A, Haase M (2001) Liquid-phase synthesis of colloids and redispersible powders of strongly luminescing LaPO4:Ce, Tb nanocrystals. Angew Chem Int Ed Engl 40:573–576

    Article  Google Scholar 

  • Saha SK, Brewer OF (1994) Determination of concentrations of oligosaccharides, complex type carbohydrates, and glycoproteins using the phenol-sulfuric acid method. Carbohydr Res 254:157–167

    Article  Google Scholar 

  • Sahiner N, Sagbas S (2014) The use of poly(vinyl phosphonic acid) microgels for the preparation of inherently magnetic Co metal catalyst particles in hydrogen production. J Power Sources 246:55–62

    Article  Google Scholar 

  • Salman AA, Heidelberg T, unpublished results currently submitted for publication

  • Sapsford KE, Algar WR, Berti L, Boeneman Gemmill K, Casey BJ, Oh E, Stewart MH, Medintz IL (2013) Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 113:1904–2074

    Article  Google Scholar 

  • Sreenivasan VKA, Zvyagin AV, Goldys EM (2013) Luminescent nanoparticles and their applications in life sciences. J Phys Condens Matter 25:194101–194123

    Article  Google Scholar 

  • Sun M, Li Z-J, Liu C-L, Fu H-X, Shen J-S, Zhang H-W (2014) Persistent luminescent nanoparticles for super-long time in vivo and in situ imaging with repeatable excitation. J Lumin 145:838–842

    Article  Google Scholar 

  • Tasdelen MA, Camp WV, Goethals E, Dubois P, Prez FD, Yagci Y (2008) Polytetrahydrofuran/clay nanocomposites by in situ polymerization and ‘click’ chemistry processes. Macromolecules 41:6035–6040

    Article  Google Scholar 

  • Vill V, Thiem J, Fischer B (1986) Studies on liquid-crystalline glycosides. Liq Cryst 6:349–356

    Article  Google Scholar 

  • White MA, Johnson JA, Koberstein JT, Turro NJ (2006) Towards the synthesis of universal ligands for metal oxide surfaces: controlling surface functionality through click chemistry. J Am Chem Soc 128:11356–11357

    Article  Google Scholar 

  • Zalipsky S (1995) Chemistry of polyethylene glycol conjugates with biologically active molecules. Adv Drug Deliv Rev 16:157–182

    Article  Google Scholar 

  • Zhao J, Liu Y, Park H-J, Boggs JM, Basu A (2012) Carbohydrate-coated fluorescent silica nanoparticles as probes for the galactose/3-sulfogalactose carbohydrate–carbohydrate interaction using model systems and cellular binding sites. Bioconjugate Chem 23:1166–1173

    Article  Google Scholar 

  • Zhou Y, Wang S, Xie K, Dai Y, Ma W (2011) Versatile functionalization of Fe3O4 nanoparticles via RAFT polymerization and click chemistry. Appl Surf Sci 257:10384–10389

    Article  Google Scholar 

Download references

Acknowledgments

Financial support for this work by the University of Malaya under research Grants RG026-09AFR, RP024-2012B, PS380-2010B, and RG264-13AFR is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Heidelberg.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11051_2014_2399_MOESM1_ESM.pdf

Supporting Information: Experimental details on the synthesis of surface modification reagents and the receptor model, including images of spectra to support the purity of the reagents, are provided as supplementary material. Besides, the material also includes experimental data for SAXS and the phenolic carbohydrate assay, as well as details on the calculation-based estimation of the receptor loading density on the coupled nanoparticle 11. (PDF 844 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salman, A.A., Heidelberg, T. In situ functionalized fluorescent nanoparticles for efficient receptor coupling. J Nanopart Res 16, 2399 (2014). https://doi.org/10.1007/s11051-014-2399-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2399-x

Keywords

Navigation