Skip to main content
Log in

Tuneable magnetic properties of hydrothermally synthesised core/shell CoFe2O4/NiFe2O4 and NiFe2O4/CoFe2O4 nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Core/shell hetero-nanostructures of hydrothermally synthesised cobalt and nickel ferrites are shown to exhibit novel magnetic properties. The compositions and phase distributions of homogeneous Co0.5Ni0.5Fe2O4, and core/shell NiFe2O4-Core/CoFe2O4-Shell and CoFe2O4-Core/NiFe2O4-Shell nanoparticles (NPs) are confirmed using high-resolution transmission electron microscopy and electron energy loss spectroscopy. SQUID magnetometry investigations demonstrate that, at room temperature, homogeneous Co0.5Ni0.5Fe2O4 NPs (~8 nm in diameter) are in the super-paramagnetic state, the magnetisation of NiFe2O4-Core/CoFe2O4-Shell NPs (~11 nm in diameter) is partially blocked, whilst CoFe2O4-Core/NiFe2O4-Shell NPs (~11 nm in diameter) are in a blocked state. In particular, NiFe2O4-Core/CoFe2O4-Shell NPs exhibit twice the out-of-phase χ″ susceptibility of CoFe2O4-Core/NiFe2O4-Shell NPs, being dominated by the magnetisation of the core ferrite phase. Hence, when exposed to a high-frequency magnetic field, it is considered that the high χ″ susceptibility of NiFe2O4-Core/CoFe2O4-Shell NPs will promote large magnetically induced heating effects, making these core/shell NPs strong candidates for hyperthermia applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Almeida TP, Fay MW, Zhu Y, Brown PD (2012a) Hydrothermal synthesis and near in situ analysis of NiFe2O4 nanoparticles. J Nanosci Nanotechnol 12:8296–8299

    Google Scholar 

  • Almeida TP, Fay MW, Zhu Y, Brown PD (2012b) Controlling role of pH and temperature on CoFe2O4 nanostructures produced by hydrothermal synthesis. J Nanosci Nanotechnol 12:8300–8304

    Google Scholar 

  • Almeida TP, Fay MW, Zhu Y, Brown PD (2012c) Hydrothermal synthesis of mixed cobalt–nickel ferrite nanoparticles. J Phys Conf Ser 371:012074

    Article  Google Scholar 

  • Ammar S, Helfen A, Jouini N, Fievet F, Rosenman I, Villian F, Molinie P, Danot M (2001) Magnetic properties of ultrafine cobalt ferrite particles synthesized by hydrolysis in a polyol medium. J Mater Chem 11:186–192

    Article  Google Scholar 

  • Babes L, Denizot B, Tanguy G, Le Jeune JJ, Jallet P (2003) Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study. J Colloid Interface Sci 212:474–482

    Article  Google Scholar 

  • Bucko MM, Haberko K (2007) Hydrothermal synthesis of nickel ferrite powders their properties and sintering. J Eur Ceram Soc 27:723–727

    Article  Google Scholar 

  • Chen D, Chen D, Jiao X, Zhao Y, He M (2003) Hydrothermal synthesis and characterization of octahedral nickel ferrite particles. Powder Technol 133:247–250

    Article  Google Scholar 

  • Cheng Y, Zheng Y, Wang Y, Bao F, Qin Y (2005) Synthesis and magnetic properties of nickel ferrite nano-octahedra. J Solid State Chem 178:2394–2397

    Article  Google Scholar 

  • Dormann JL, Fiorani D, Tronc E (2007) Magnetic relaxation in fine-particle systems. Adv Chem Phys 98:283–294

    Google Scholar 

  • Garcia-Otero J, Porto M, Rivas J, Bunde A (1999) Influence of the cubic anisotropy constants on the hysteresis loops of single-domain particles: a Monte Carlo study. J Appl Phys 85:2287–2292

    Article  Google Scholar 

  • George M, John AM, Nair SS, Joy PA, Anantharaman MR (2006) Finite size effects on the structural and magnetic properties of sol–gel synthesized NiFe2O4 powders. J Magn Magn Mater 302:190–195

    Article  Google Scholar 

  • Gomes JA, Sousa MH, Tourinho FA, Aquino R, Da Silva GJ, Depeyrot J, Dubois E, Perzynski R (2008) Synthesis of core–shell ferrite nanoparticles for ferrofluids: chemical and magnetic analysis. J Phys Chem C 112:6220–6227

    Article  Google Scholar 

  • Gong Y-X, Zhen L, Jiang J-T, Xu C-Y, Wang W-S, Shao W-Z (2011) Synthesis of Fe–ferrite composite nanotubes with excellent microwave absorption performance. CrystEngComm 13:6839

    Article  Google Scholar 

  • Habib AH, Ondeck CL, Chaudhary P, Bockstaller MR, McHenry ME (2008) Evaluation of iron–cobalt/ferrite core–shell nanoparticles for cancer thermotherapy. J Appl Phys 103:07A307

    Article  Google Scholar 

  • Hergt R, Dutz S, Muller R, Zeisberger M (2006) Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J Phys Condens Matter 18:S2919–S2934

    Article  Google Scholar 

  • Kambale RC, Shaikh PA, Harale NS, Bilur VA, Kolekar YD, Bhosale CH, Rajpure KY (2010) Structural and magnetic properties of Co1−x Mn x Fe2O4 (0 ≤ x ≤ 0.4) spinel ferrites synthesized by combustion route. J Alloys Compd 490:568–571

    Article  Google Scholar 

  • Kim D-H, Nikles DE, Johnson DT, Brazel CS (2008) Heat generation of aqueously dispersed CoFe2O4 nanoparticles as heating agents for magnetically drug delivery and hyperthermia. J Magn Magn Mater 320:2390–2396

    Article  Google Scholar 

  • Kumar CSSR, Mohammad F (2011) Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev 63:789–808

    Article  Google Scholar 

  • Lee EW, Bishop JEL (1966) Magnetic behaviour of single-domain particles. Proc Phys Soc Lond 89:661

    Article  Google Scholar 

  • Li X-H, Zhang D-H, Chen J-S (2006) Synthesis of amphiphilic superparamagnetic ferrite/block copolymer hollow submicrospheres. JACS Commun 128:8382–8383

    Article  Google Scholar 

  • Li X-H, Xu C-L, Han X-H, Qiao L, Wang T, Li F-S (2010) Synthesis and magnetic properties of nearly monodisperse CoFe2O4 nanoparticles through a simple hydrothermal condition. Nanoscale Res Lett 5:1039–1044

    Article  Google Scholar 

  • Liu Q, Sun J, Long H, Sun X, Zhong X, Xu Z (2008) Hydrothermal synthesis of CoFe2O4 nanoplatelets and nanoparticles. Mater Chem Phys 108:269–273

    Article  Google Scholar 

  • Maaz K, Mumtaz A, Hasanain SK, Bertino MF (2010) Temperature dependent coercivity and magnetization of nickel ferrite nanoparticles. J Magn Magn Mater 322:2199–2202

    Article  Google Scholar 

  • Makovec D, Kosak A, Drofenik M (2004) The preparation of MnZn–ferrite nanoparticles in water–CTAB–hexanol microemulsions. Nanotechnology 15:S160–S166

    Article  Google Scholar 

  • Mathew DS, Juang R-S (2007) An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem Eng J 129:51–65

    Article  Google Scholar 

  • Moroz P, Jones SK, Gray BN (2002) Magnetically mediated hyperthermia: current status and future directions. Int J Hyperthermia 18:267

    Article  Google Scholar 

  • Moumen N, Pileni MP (1996) Control of the size of cobalt ferrite magnetic fluid. J Phys Chem 100:1867–1873

    Article  Google Scholar 

  • Pankhurst QA, Connely J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:R167–R181

    Article  Google Scholar 

  • Pillai V, Shah DO (1996) Synthesis of high-coercivity cobalt ferrite particles using water-in-oil microemulsions. J Magn Magn Mater 163:243–248

    Article  Google Scholar 

  • Pollert E, Veverka P, Veverka M, Kaman O, Zaveta K, Vasseur S, Epherre R, Goglio G, Duguet E (2009) Search of new core materials for magnetic fluid hyperthermia: preliminary chemical and physical issues. Prog Solid State Chem 37:1–4

    Article  Google Scholar 

  • Qi Y, Yang Y, Zhao X, Liu X, Wu P, Zhang F, Xu S (2010) Controllable magnetic properties of cobalt ferrite particles derived from layered double hydroxide precursors. Particuology 8:207–211

    Article  Google Scholar 

  • Rezlescu E, Iftimie N, Popa PD, Rezlescu N (2005) Porous nickel ferrite for semiconducting gas sensor. J Phys Conf Ser 15:51–54

    Article  Google Scholar 

  • Sepelak V, Baabe D, Mienert D, Schultze D, Krumeich F, Litterst FJ, Becker KD (2003) Evolution of structure and magnetic properties with annealing temperature in nanoscale high-energy-milled nickel ferrite. J Magn Magn Mater 257:377–386

    Article  Google Scholar 

  • Sepelak V, Bergmann I, Feldhoff A, Heitjans P, Krumeich F, Menzel D, Litterst FJ, Campbell SJ, Becker KD (2007) Nanocrystalline nickel ferrite, NiFe2O4: mechanosynthesis, nonequilibrium cation distribution, canted spin arrangement, and magnetic behaviour. J Phys Chem C 111:5026–5033

    Article  Google Scholar 

  • Sharifi I, Shokrollahi H, Amiri S (2012) Ferrite-based magnetic nanofluids used in hyperthermia applications. J Magn Magn Mater 324:903–915

    Article  Google Scholar 

  • Shen XQ, Xiang J, Song FZ, Liu MQ (2010) Characterization and magnetic properties of electrospun Co1−x Zn x Fe2O4 nanofibers. Appl Phys A 99:189–195

    Article  Google Scholar 

  • Shigeoka D, Katayanagi H, Moro Y, Kimura S, Mashino T, Ichiyanagi Y (2010a) Production of Co–Ti ferrite nanoparticles for use as agents in hyperthermia treatment. J Phys Conf Ser 200:122002

    Article  Google Scholar 

  • Shigeoka D, Katayanagi H, Moro Y, Kimura S, Mashino T, Hiroki T, Ichiyanagi Y (2010b) AC magnetic susceptibility of Co–Ti–Zn ferrite nanoparticles for hyperthermia agents. Nanoelectron Conf Proc 3:904

    Google Scholar 

  • Sileo EE, Rodenas LG, Paiva-Santos CO, Stephens PW, Morando PJ, Blesa MA (2006) Correlation of reactivity with structural factors in a series of Fe(II) substituted cobalt ferrites. J Solid State Chem 179:2237–2244

    Article  Google Scholar 

  • Singhal S, Singh J, Barthwal SK, Chandra K (2005) Preparation and characterization of nanosize nickel-substituted cobalt ferrites (Co1−x Ni x Fe2O4). J Solid State Chem 178:3183–3189

    Article  Google Scholar 

  • Soler MAG, Lima ECD, da Silva W, Melo TFO, Pimenta ACM, Sinnecker JP, Azevedo RB, Garg VK, Oliviera AC, Novak MA, Morais PC (2007) Aging investigation of cobalt ferrite nanoparticles in low pH magnetic fluid. Langmuir 23:9611–9617

    Article  Google Scholar 

  • Song Q, Zhang ZJ (2012) Controlled synthesis and magnetic properties of bimagnetic spinel ferrite CoFe2O4 and MnFe2O4 nanocrystals with core–shell architecture. J Am Chem Soc 134:10182–10190

    Article  Google Scholar 

  • Srivastava M, Chaubey S, Ojha AK (2009) Investigation on size dependent structural and magnetic behaviour of nickel ferrite nanoparticles prepared by sol–gel and hydrothermal methods. Mater Chem Phys 118:174–180

    Article  Google Scholar 

  • Stoner EC, Wohlfarth EPA (1948) Mechanism of magnetic hysteresis in heterogeneous alloys. Philos Trans R Soc Lond A 240:599–642

    Article  Google Scholar 

  • Suto M, Hirota Y, Mamiya H, Fujita A, Kasuya R, Tohji R, Jeyadevan B (2009) Heat dissipation mechanism of magnetite nanoparticles in magnetic fluid hyperthermia. J Magn Magn Mater 321:1493–1496

    Article  Google Scholar 

  • Torres TE, Roca AG, Morales MP, Ibarra A, Marquina C, Ibarra MR, Goya GF (2010) Magnetic properties and energy absorption of CoFe2O4 nanoparticles for magnetic hyperthermia. J Phys Conf Ser 200:072101

    Article  Google Scholar 

  • Tung LD, Kolesnichenko V, Caruntu D, Chou NH, O’Connor CJ, Spinu L (2003) Magnetic properties of ultrafine cobalt ferrite particles. J Appl Phys 93:7486–7488

    Article  Google Scholar 

  • Vazquez-Vazquez C, Lopez-Quintela MA, Bujan-Nunez MC, Rivas J (2011) Finite size and surface effects on the magnetic properties of cobalt ferrite nanoparticles. J Nanopart Res 13:1663–1676

    Article  Google Scholar 

  • Vestal CR, Zhang ZJ (2003) Synthesis and magnetic characterization of Mn and Co spinel ferrite–silica nanoparticles with tunable magnetic core. Nano Lett 3:1739–1743

    Article  Google Scholar 

  • Wang L, Ren J, Wang Y, Liu X, Wang L (2010) Controlled synthesis of magnetic spinel-type nickel ferrite nanoparticles by the interface reaction and hydrothermal crystallization. J Alloys Compd 490:656–660

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the Engineering and Physical Science research Council for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Trevor P. Almeida or Fabrizio Moro.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 800 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Almeida, T.P., Moro, F., Fay, M.W. et al. Tuneable magnetic properties of hydrothermally synthesised core/shell CoFe2O4/NiFe2O4 and NiFe2O4/CoFe2O4 nanoparticles. J Nanopart Res 16, 2395 (2014). https://doi.org/10.1007/s11051-014-2395-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2395-1

Keywords

Navigation