Skip to main content
Log in

Multimethod 3D characterization of natural plate-like nanoparticles: shape effects on equivalent size measurements

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The fundamental properties and processes that govern nanoparticle behavior in colloidal dispersions are critical to predict their performance in applications and also their environmental and health implications. Illite is a platy clay mineral that is present in large amounts in aquatic environments and can be used as a model natural particle for environmental risk assessment. However, the high-aspect ratio of illite makes conventional analysis, usually assuming a spherical size, insufficient for the assessment of shape-dependent properties. In the current paper, a multimethod characterization of a suspension of illite particles was done using atomic force microscopy, scanning electron microscopy, dynamic light scattering (DLS), nanoparticle tracking analysis, differential centrifugal sedimentation, and centrifugal-field flow fractionation coupled to multiangle light scattering and DLS. The relation between the different measurands was investigated, and the effect of the shape on the equivalent particle size was reported. While some of the used techniques are capable of assessing the aspect ratio of illite, the results confirm the need for multiple techniques and analysis of different types of measurands especially for high-aspect-ratio particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Afrooz ARMN, Khan IA, Hussain SM, Saleh NB (2013) Mechanistic heteroaggregation of gold nanoparticles in a wide range of solution chemistry. Environ Sci Technol 47(4):1853–1860. doi:10.1021/es3032709

    Article  Google Scholar 

  • Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4(10):634–641. doi:10.1038/nnano.2009.242

    Article  Google Scholar 

  • Baalousha M, Lead JR (2012) Rationalizing nanomaterial sizes measured by atomic force microscopy, flow field-flow fractionation, and dynamic light scattering: sample preparation, polydispersity, and particle structure. Environ Sci Technol 46(11):6134–6142. doi:10.1021/es301167x

    Article  Google Scholar 

  • Baalousha M, Kammer FVD, Motelica-Heino M, Le Coustumer P (2005) 3D characterization of natural colloids by FIFFF–MALLS–TEM. Anal Bioanal Chem 383(4):549–556. doi:10.1007/s00216-005-0006-9

    Article  Google Scholar 

  • Beckett R, Giddings JC (1997) Entropic contribution to the retention of nonspherical particles in field-flow fractionation. J Colloid Interface Sci 186(1):53–59. doi:10.1006/jcis.1996.4612

    Article  Google Scholar 

  • Beckett R, Nicholson G, Hart BT, Hansen M, Giddings JC (1988) Separation and size characterization of colloidal particles in river water by sedimentation field-flow fractionation. Water Res 22(12):1535–1545

    Article  Google Scholar 

  • Beckett R, Murphy D, Tadjiki S, Chittleborough DJ, Giddings JC (1997) Determination of thickness, aspect ratio and size distributions for platey particles using sedimentation field-flow fractionation and electron microscopy. Colloids Surf A 120(1–3):17–26

    Article  Google Scholar 

  • Boyd RD, Pichaimuthu SK, Cuenat A (2011) New approach to inter-technique comparisons for nanoparticle size measurements; using atomic force microscopy, nanoparticle tracking analysis and dynamic light scattering. Colloids Surf, A 387(1–3):35–42. doi:10.1016/j.colsurfa.2011.07.020

    Article  Google Scholar 

  • Chanudet V, Filella M (2006) A non-perturbing scheme for the mineralogical characterization and quantification of inorganic colloids in natural waters. Environ Sci Technol 40(16):5045–5051. doi:10.1021/es060255y

    Article  Google Scholar 

  • Chun J, Fagan JA, Hobbie EK, Bauer BJ (2008) Size separation of single-wall carbon nanotubes by flow-field flow fractionation. Anal Chem 80(7):2514–2523. doi:10.1021/ac7023624

    Article  Google Scholar 

  • Clay Minerals Society, Organisation for Economic Co-operation Development (1979) Data Handbook for Clay Materials and Other Non-metallic Minerals: Providing Those Involved in Clay Research and Industrial Application with Sets of Authoriative Data Describing the Physical and Chemical Properties and Mineralogical Composition of the Available Reference Materials. Pergamon Press

  • Cornelis G, Pang L, Doolette C, Kirby JK, McLaughlin MJ (2013) Transport of silver nanoparticles in saturated columns of natural soils. Sci Total Environ 463–464:120–130. doi:10.1016/j.scitotenv.2013.05.089

    Article  Google Scholar 

  • Deer WA, Howie RA, Zussman J (1992) An introduction to the rock-forming minerals. Longman Scientific & Technical, Harlow

  • Egan W, Hillgeman T (1979) Optical properties of inhomogeneous materials. Applications to geology, astronomy, cehmistry and engineering. Academic press, London

    Google Scholar 

  • EU (2011) Commission recommendation of 18 October 2011 on the definition of nanomaterial (2011/696/EU). Off J L (275):38–40

  • Filella M, Zhang J, Newman ME, Buffle J (1997) Analytical applications of photon correlation spectroscopy for size distribution measurements of natural colloidal suspensions: capabilities and limitations. Colloids Surf A 120(1–3):27–46. doi:10.1016/S0927-7757(96)03677-1

    Article  Google Scholar 

  • Friedrich F, Steudel A, Weidler PG (2008) Change of the refractive index of illite particles by reduction of the Fe content of the octahedral sheet. Clays Clay Miner 56(5):505–510. doi:10.1346/CCMN.2008.0560503

    Article  Google Scholar 

  • Fromyr TR, Hansen FK, Olsen T (2012) The optimum dispersion of carbon nanotubes for epoxy nanocomposites: evolution of the particle size distribution by ultrasonic treatment. J Nanotech 2012:14. doi:10.1155/2012/545930

    Article  Google Scholar 

  • Fvd Kammer, Baborowski M, Friese K (2005) Field-flow fractionation coupled to multi-angle laser light scattering detectors: applicability and analytical benefits for the analysis of environmental colloids. Anal Chim Acta 552(1–2):166–174. doi:10.1016/j.aca.2005.07.049

    Google Scholar 

  • Gallego-Urrea JA, Tuoriniemi J, Pallander T, Hassellöv M (2010) Measurements of nanoparticle number concentrations and size distributions in contrasting aquatic environments using nanoparticle tracking analysis. Environ Chem 7:67. doi:10.1071/EN09114

    Article  Google Scholar 

  • Gallego-Urrea JA, Tuoriniemi J, Hassellöv M (2011) Applications of particle-tracking analysis to the determination of size distributions and concentrations of nanoparticles in environmental, biological and food samples. TrAC Trends Anal Chem. doi:10.1016/j.trac.2011.01.005

    Google Scholar 

  • Giddings JC (1987) Advances in colloid characterization by sedimentation field-flow fractionation. Abstracts of Papers of the American Chemical Society 193:173-COLL

  • Hammes J, Gallego-Urrea JA, Hassellöv M (2013) Geographically distributed classification of surface water chemical parameters influencing fate and behavior of nanoparticles and colloid facilitated contaminant transport. Water Res. doi:10.1016/j.watres.2013.06.015

    Google Scholar 

  • Happel J, Brenner H (1983) Low Reynolds number hydrodynamics: with special applications to particulate media. Prentice-Hall, Upper Sadle River

    Google Scholar 

  • Hassellöv M, Kaegi R (2009) Analysis and characterization of manufactured nanoparticles in aquatic environments. In: Lead JR, Smith E (eds) Nanoscience and nanotechnology: environmental and human health implications. Wiley, New York, pp 211–266

    Chapter  Google Scholar 

  • Hassellov M, von der Kammer F (2008) Iron oxides as geochemical nanovectors for metal transport in soil–river systems. Elements 4(6):401–406. doi:10.2113/gselements.4.6.401

    Article  Google Scholar 

  • Hassellöv M, Lyvén B, Bengtsson H, Jansen R, Turner D, Beckett R (2001) Particle size distributions of clay-rich sediments and pure clay minerals: a comparison of grain size analysis with sedimentation field-flow fractionation. Aquat Geochem 7(2):155–171. doi:10.1023/A:1017905822612

    Article  Google Scholar 

  • Hassellöv M, Readman J, Ranville J, Tiede K (2008) Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology 17(5):344–361. doi:10.1007/s10646-008-0225-x

    Article  Google Scholar 

  • Hillier S (2001) Particulate composition and origin of suspended sediment in the R. Don, Aberdeenshire, UK. Sci Total Environ 265 (1–3):281–293. doi: 10.1016/S0048-9697(00)00664-1

  • Hochella MF, Lower SK, Maurice PA, Penn RL, Sahai N, Sparks DL, Twining BS (2008) Nanominerals, mineral nanoparticles, and earth systems. Science 319(5870):1631–1635. doi:10.1126/science.1141134

    Article  Google Scholar 

  • Jennings BR, Parslow K (1988) Particle-size measurement—the equivalent spherical diameter. Proc R Soc Lond a Mat 419(1856):137–149. doi:10.1098/rspa.1988.0100

    Article  Google Scholar 

  • Khan IA, Afrooz AR, Flora JR, Schierz PA, Ferguson PL, Sabo-Attwood T, Saleh NB (2013) Chirality affects aggregation kinetics of single-walled carbon nanotubes. Environ Sci Technol 47(4):1844–1852. doi:10.1021/es3030337

    Article  Google Scholar 

  • Koppel DE (1972) Analysis of macromolecular polydispersity in intensity correlation spectroscopy–method of cumulants. J Chem Phys 57(11):4814. doi:10.1063/1.1678153

    Article  Google Scholar 

  • Liang Z, Susha A, Caruso F (2003) Gold nanoparticle-based core—shell and hollow spheres and ordered assemblies thereof. Chem Mater 15(16):3176–3183. doi:10.1021/cm031014h

    Article  Google Scholar 

  • Livsey I (1987) Neutron scattering from concentric cylinders. Intraparticle interference function and radius of gyration. J Chem Soc Faraday Trans 2 83(8):1445–1452. doi:10.1039/F29878301445

    Article  Google Scholar 

  • Nečas D, Klapetek P (2013) Gwyddion user guide

  • Nowack B, Ranville JF, Diamond S, Gallego-Urrea JA, Metcalfe C, Rose J, Horne N, Koelmans AA, Klaine SJ (2012) Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ Toxicol Chem 31(1):50–59. doi:10.1002/etc.726

    Article  Google Scholar 

  • Pedersen JS (1997) Analysis of small-angle scattering data from colloids and polymer solutions: modeling and least-squares fitting. Adv Colloid Interface Sci 70:171–210. doi:10.1016/s0001-8686(97)00312-6

    Article  Google Scholar 

  • Phelan FR, Bauer BJ (2008) Separation mechanisms for nanoscale spheres and rods in field-flow fractionation. In: Nsti Nanotech 2008, vol 1, Technical Proceedings

  • Plaschke M, Schäfer T, Bundschuh T, Ngo Manh T, Knopp R, Geckeis H, Kim JI (2001) Size characterization of bentonite colloids by different methods. Anal Chem 73(17):4338–4347. doi:10.1021/ac010116t

    Article  Google Scholar 

  • Plathe KL, von der Kammer F, Hassellöv M, Moore JN, Murayama M, Hofmann T, Hochella MF Jr (2013) The role of nanominerals and mineral nanoparticles in the transport of toxic trace metals: field-flow fractionation and analytical TEM analyses after nanoparticle isolation and density separation. Geochimica et Cosmochimica Acta 102:213–225. doi:10.1016/j.gca.2012.10.029

    Article  Google Scholar 

  • Provencher SW (1982) A constrained regularization method for inverting data represented by linear algebraic or integral equations. Comput Phys Commun 27(3):213–227. doi:10.1016/0010-4655(82)90173-4

    Article  Google Scholar 

  • Quik JTK, Velzeboer I, Wouterse M, Koelmans AA, van de Meent D (2013) Heteroaggregation and sedimentation rates for nanomaterials in natural waters. Water Res. doi:10.1016/j.watres.2013.09.036

    Google Scholar 

  • Sharma V, Park K, Srinivasarao M (2009) Shape separation of gold nanorods using centrifugation. Proc Natl Acad Sci USA 106(13):4981–4985. doi:10.1073/pnas.0800599106

    Article  Google Scholar 

  • van de Hulst HC (1981) Light scattering by small particles, 2nd edn. Dover Publications, New York

    Google Scholar 

  • Velde B (1992) Introduction to clay minerals: chemistry, origins, uses, and environmental significance. Chapman & Hall, Amsterdam

    Book  Google Scholar 

  • von der Kammer F, Baborowski M, Friese K (2005) Application of a high-performance liquid chromatography fluorescence detector as a nephelometric turbidity detector following Field-Flow Fractionation to analyse size distributions of environmental colloids. J Chromatogr A 1100(1):81–89. doi:10.1016/j.chroma.2005.09.013

    Article  Google Scholar 

  • Williams PS, Giddings JC (1987) Power programmed field-flow fractionation—a new program form for improved uniformity of fractionating power. Anal Chem 59(17):2038–2044

    Article  Google Scholar 

  • Zhou D, Abdel-Fattah AI, Keller AA (2012) Clay particles destabilize engineered nanoparticles in aqueous environments. Environ Sci Technol 46(14):7520–7526. doi:10.1021/es3004427

    Article  Google Scholar 

Download references

Acknowledgments

Tobias Palander and Anders Mårtensson are acknowledged for his help with the disk centrifuge and AFM measurements, respectively. Staffan Wall and Johan Bergenholtz are acknowledged for discussion about hydrodynamic and light scattering properties. The authors wish to acknowledge funding sources from the European framework program projects MARINA (CP-FP 263215) and NANOFATE (CP-FP 247739) in supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geert Cornelis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 578 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallego-Urrea, J.A., Hammes, J., Cornelis, G. et al. Multimethod 3D characterization of natural plate-like nanoparticles: shape effects on equivalent size measurements. J Nanopart Res 16, 2383 (2014). https://doi.org/10.1007/s11051-014-2383-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2383-5

Keywords

Navigation