Skip to main content
Log in

Hydrothermal synthesis of luminescent GdVO4:Eu nanoparticles with dispersibility in organic solvents

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A general hydrothermal method was developed to prepare colloidal gadolinium orthovanadate nanocrystals by using supercritical water as a green solvent. The spectacular properties of supercritical water is advantageous for synthesizing crystalline and surface-modified luminescent nanoparticles capped with long alkyl chains of organic modifiers on the surface of the particles to make them dispersible in nonpolar solvents. The size of the nanoparticles could be controlled within 10–15 nm. Characterization of the hydrothermal product was accomplished using X-ray diffraction, transmission electron microscopy (TEM), high-resolution TEM, Fourier transform infrared spectroscopy, thermo gravimetric analysis, and electron dispersive X-ray scattering. The photoluminescence characterization showed that there is a strong red emission under UV excitation, which broadens the material’s various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adschiri T (2007) Supercritical hydrothermal synthesis of organic–inorganic hybrid nanoparticles. Chem Lett 36:1188–1193

    Article  Google Scholar 

  • Adschiri T, Hakuta Y, Arai K (2000) Hydrothermal synthesis of metal oxide fine particles at supercritical conditions. Ind Eng Chem Res 39:4901–4907

    Article  Google Scholar 

  • Anitha M, Ramakrishnan P, Chatterjee A, Alexander G, Singh H (2002) Spectral properties and emission efficiencies of GdVO4 phosphors. Appl Phys A 74:153–162

    Article  Google Scholar 

  • Boyer JC, Johnson NJJ, van Veggel FCJM (2009) Upconverting lanthanide-doped NaYF4–PMMA polymer composites prepared by in situ polymerization. Chem Mater 21:2010–2012

    Article  Google Scholar 

  • Carlos LD, Ferreira RAS, Bermudez VDZ, López BJ, Escribano P (2011) Progress on lanthanide-based organic–inorganic hybrid phosphors. Chem Soc Rev 40:536–549

    Article  Google Scholar 

  • Chung JW, Yang HK, Moon BK, Choi BC, Jeong JH, Bae JS, Kim KH (2009) The dependence of temperature synthesis of GdVO4:Eu3+ nanoparticle phosphors by solvothermal method. Curr Appl Phys 9:S222–S225

    Article  Google Scholar 

  • Fan W, Song X, Bu Y, Sun S, Zhao X (2006) Selected-control hydrothermal synthesis and formation mechanism of monazite- and zircon-type LaVO4 nanocrystals. J Phys Chem B 110:23247–23254

    Article  Google Scholar 

  • Fang ZM, Hong Q, Zhou ZH, Dai SJ, Weng WZ, Wan HL (1999) Oxidative dehydrogenation of propane over a series of low-temperature rare earth orthovanadate catalysts prepared by the nitrate method. Catal Lett 61:39–44

    Article  Google Scholar 

  • Gu M, Liu Q, Mao S, Mao D, Chang C (2008) Preparation and photoluminescence of single-crystalline GdVO4:Eu3+ nanorods by hydrothermal conversion of Gd(OH)3 nanorods. Cryst Growth Des 8:1422–1425

    Article  Google Scholar 

  • He X, Zhang L, Chen G, Hang Y (2009) Crystal growth and spectral properties of Sm:GdVO4. J Alloy Compd 467:366–369

    Article  Google Scholar 

  • Humphreys CJ (2008) Solid state lightning. MRS Bull 33:459–470

    Article  Google Scholar 

  • Jin D, Yang H, Ding G, Yu XJ, Wang L, Zheng Y (2008) Hydrothermal synthesis and photoluminescence behavior of Eu-doped GdVO4. Inorg Mater 44:1121–1124

    Article  Google Scholar 

  • Kang X, Yang D, Ma P, Dai Y, Shang M, Geng D, Cheng Z, Lin J (2013) Fabrication of hollow and porous structured GdVO4:Dy3+ nanospheres as anticancer drug carrier and MRI contrast agent. Langmuir 29:1286–1294

    Article  Google Scholar 

  • Kim YH, Lee JH, Shin D-W, Park SM, Moon JS, Nam JG, Yoo J-B (2010) Synthesis of shape-controlled b-In2S3 nanotubes through oriented attachment of nanoparticles. Chem. Comm. 46:2292–2294

    Article  Google Scholar 

  • Li C, Lin J (2010) Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application. J Mater Chem 20:6831–6847

    Article  Google Scholar 

  • Li G, Wang Z, Yu M, Quan Z, Lin J (2006) Fabrication and optical properties of core-shell structured spherical SiO2@GdVO4:Eu3+ phosphors via sol–gel process. J Solid State Chem 179:2698–2706

    Article  Google Scholar 

  • Liu J, Li Y (2007) General synthesis of colloidal rare earth orthovanadate nanocrystals. J Mater Chem 17:1797–1803

    Article  Google Scholar 

  • Liu G, Hong G, Wang JX, Dong X (2006a) Deposition of GdVO4:Eu3+ nanoparticles on silica nanospheres by a simple sol–gel method. Nanotechnology 17:3134–3138

    Article  Google Scholar 

  • Liu JF, Yao QH, Li YD (2006b) Effects of down conversion luminescent film in dye-sensitized solar cells. Appl Phys Lett 88:173119

    Article  Google Scholar 

  • Martinez-Huertaa MV, Coronadoa JM, Fernandez-Garciaa M, Iglesias-Jueza A, Deob G, Fierro JLG, Banares MA (2004) Nature of the vanadia–ceria interface in V5+/CeO2 catalysts and its relevance for the solid-state reaction toward CeVO4 and catalytic properties. J Catal 225:240–248

    Article  Google Scholar 

  • Nuñez NO, Rivera S, Alcantara D, De la Fuente JM, Sevillanoc JG, Ocaña M (2013) Surface modified Eu:GdVO4 nanocrystals for optical and MRI imaging. Dalton Trans 42:10725–10734

    Article  Google Scholar 

  • Sahraneshin A, Takami S, Hojo D, Minami K, Arita T, Adschiri T (2012a) Synthesis of shape-controlled and organic-hybridized hafnium oxide nanoparticles under sub- and supercritical hydrothermal conditions. J Supercrit Fluid 62:190–196

    Article  Google Scholar 

  • Sahraneshin A, Takami S, Hojo D, Minami K, Arita T, Adschiri T (2012b) Mechanistic study on the synthesis of one-dimensional yttrium aluminum garnet nanostructures under supercritical hydrothermal conditions in the presence of organic amines. Cryst Eng Comm 14:6085–6092

    Article  Google Scholar 

  • Savage PE (1999) Organic chemical reactions in supercritical water. Chem Rev 99:603

    Article  Google Scholar 

  • Selvan RK, Gedanken A, Anilkumar P, Manikandan G, Karunakaran C (2009) Synthesis and characterization of rare earth orthovanadate (RVO4; R = La, Ce, Nd, Sm, Eu & Gd) nanorods/nanocrystals/nanospindles by a facile sonochemical method and their catalytic properties. J Clust Sci 20:291–305

    Article  Google Scholar 

  • Shimamura K, Uda S, Kochurikhin VV, Taniuchi T, Fukuda (1996) Growth and characterization of gadolinium vanadate GdVO4 single crystal for laser applications. Jpn J Appl Phys 35:1832–1835

    Article  Google Scholar 

  • Terada Y, Shimamura K, Kochurikhin VV, Barashov LV, Ivanov MA, Fukuda T (1996) Growth and optical properties of ErVO4 and LuVO4 single crystals. J Cryst Growth 167:369–372

    Article  Google Scholar 

  • Tsipis EV, Patrakeev MV, Kharton VV, Vyshatko NP, Frade JR (2002) Ionic and p-type electronic transport in zircon-type Ce1−x A x VOδ (A = Ca, Sr). J Mater Chem 12:3738–3745

    Article  Google Scholar 

  • Watanabe M, Tsukagoshi M, Hirakoso H, Adschiri T, Arai K (2000) Kinetics and product distribution of n-hexadecane pyrolysis. J Am Inst Chem. 46:843–856

    Article  Google Scholar 

  • Xu Z, Li C, Hou Z, Peng C, Lin J (2011) Morphological control and luminescence properties of lanthanide orthovanadate LnVO4 (Ln = La–Lu) nano-/microcrystals via hydrothermal process. Cryst Eng Comm 13:474–482

    Article  Google Scholar 

  • Yu M, Lin J, Wang SB (2005) Effects of x and R3+ on the luminescent properties of Eu3+ in nanocrystalline YV x P1−x O4:Eu3+ and RVO4:Eu3+ thin-film phosphors. Appl Phys A 80:353–360

    Article  Google Scholar 

  • Yu C, Yu M, Li C, Zhang C, Yang P, Lin J (2009) Spindle-like lanthanide orthovanadate nanoparticles: facile synthesis by ultrasonic irradiation, characterization, and luminescent properties. Cryst Growth Des 9:783–791

    Article  Google Scholar 

  • Zhang J, Ohara S, Umetsu M, Naka T, Hatakeyama Y, Adschiri T (2007) Colloidal ceria nanocrystals: a tailor-made crystal morphology in supercritical water. Adv Mater 19:203–206

    Article  Google Scholar 

  • Zhang CC, Zhang ZM, Dai RC, Wang ZP, Zhang JW, Ding ZJ (2010) High-pressure Raman and luminescence study on the phase transition of GdVO4:Eu3+ microcrystals. J Phys Chem C 114:18279–18282

    Article  Google Scholar 

  • Zheng Y, You H, Jia G, Liu K, Song Y, Yang M, Zhang H (2009) Facile hydrothermal synthesis and luminescent properties of large-scale GdVO4:Eu3+ nanowires. Cryst Growth Des 9:5101–5107

    Article  Google Scholar 

  • Zhong Z, Lin M, Ng V, Ng GXB, Foo Y, Gedanken A (2006) A versatile wet-chemical method for synthesis of one-dimensional ferric and other transition metal oxides. Chem Mater 18:6031–6036

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by World Premier International Research Centre-Advanced Institute for Materials Research (WPI-AIMR). The authors gratefully acknowledge Tohoku University and Japan Student Services Organization (JASSO) for financial support. The authors also gratefully acknowledge Mr. Takamichi Miyazaki for obtaining the EDX and HRTEM results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varu Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, V., Takami, S., Aoki, N. et al. Hydrothermal synthesis of luminescent GdVO4:Eu nanoparticles with dispersibility in organic solvents. J Nanopart Res 16, 2378 (2014). https://doi.org/10.1007/s11051-014-2378-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2378-2

Keywords

Navigation