Skip to main content

Hydrothermal synthesis, characterization, and growth mechanism of hematite nanoparticles

Abstract

Polyhedron-shaped hematite (α-Fe2O3) nanoparticles have been successfully synthesized via a facile hydrothermal method by mixing FeCl3 and NH4OH at high temperature. In this work, the influences of experimental conditions such as the effects of the concentration of iron’s ion, NH4OH concentration, and reaction temperature on the hematite’s particle size, dispersity, and growth rate were investigated. Results show that hematite nanoparticles with good crystallinity with the particle size of 100 nm could be obtained when the hydrothermal reaction was carried out with concentration of Fe3+ = 16 mM, NH4OH = 40 mM, reaction temperature = 120 °C, and reaction time = 24 h. In addition, this study investigates the hematite nanoparticle-formation mechanism with reaction time. It is observed that the formation of hematite nanoparticles are initiated by the formation of intermediate phase of goethite nanorods in the early stage of hydrothermal reaction, which further transform into hematite crystal as the reaction is progressed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Almeida T, Fay M, Zhu Y, Brown P (2010) Hydrothermal growth mechanism of α-Fe2O3 nanorods derived by near in situ analysis. Nanoscale 2:2390–2399

    Article  Google Scholar 

  2. Barlow D, Baird J, Su C (2004) Theory of the von Weimarn rules governing the average size of crystals precipitated from a supersaturated. J Cryst Growth 264:417–423

    Article  Google Scholar 

  3. Bbusca G, Rossi PF (1983) FT-IR spectroscopic and calorimetric characterization of the adsorbed forms of water on α-Fe2O3 obtained by thermal decomposition of α-FeOOH. Mater Chem Phys 9:561–570

    Article  Google Scholar 

  4. Beruto D (1983) Effect of water vapor on the evolution of the micropores of the α-Fe2O3 produced by α-FeOOH decomposition “in vacuo”. Mater Chem Phys 8:233–242

    Article  Google Scholar 

  5. Burleson D, Penn RL (2006) Two-step growth of goethite from ferrihydrite. Langmuir 22:402–409

    Article  Google Scholar 

  6. Byrappa K, Adschiri T (2007) Hydrothermal technology for nanotechnology. Prog Cryst Growth Charact 53:117–166

    Article  Google Scholar 

  7. Caudron E, Tfayli A, Monnier C, Manfait M, Prognon P, Pradeau D (2011) Identification of hematite particles in sealed glass containers for pharmaceutical uses by Raman microspectroscopy. J Pharm Biomed 54:866–868

    Article  Google Scholar 

  8. Cherian C, Sundaramurthy J, Kalaivani M, Ragupathy P, Kumar P, Thavasi V, Reddy M, Sow C, Mhaisalkar S, Ramakrishna S, Chowdari B (2012) Electrospun α-Fe2O3 nanorods as a stable, high capacity anode material for Li-ion batteries. J Mater Chem 22:12198–12204

    Article  Google Scholar 

  9. Chernyshova I, Hochella M Jr, Madden A (2007) Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition. Phys Chem Chem Phys 9:1736–1750

    Article  Google Scholar 

  10. Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses, 2nd edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  11. Cudennec Y, Lecerf A (2006) The transformation of ferrihydrate into goethite or hematite, revisited. J Solid State Chem 179:716–722

    Article  Google Scholar 

  12. Darezereshki E (2011) One-step synthesis of hematite (α-Fe2O3) nano-particles by direct thermal-decomposition of meghemite. Mater Lett 65:642–645

    Article  Google Scholar 

  13. de Faria D, Silva S, de Oliveira M (1997) Raman microspectroscopy of some iron oxides and oxyhydroxides. J Raman Spectrosc 28:873–878

    Article  Google Scholar 

  14. Diamandescu L, Mihaila-Tarabasanu D, Colagero S (1997) Mössbauer study of the solid phase transformation α-FeOOH → Fe2O3. Mater Chem Phys 48:170–173

    Article  Google Scholar 

  15. Fan H, You G, Li Y, Zheng Z, Tan H, Shen Z, Tang S, Feng Y (2009) Shape-controlled synthesis of single-crystalline Fe2O3 hollow nanocrystals and their tunable optical properties. J Phys Chem C 113:9928–9935

    Article  Google Scholar 

  16. Fischer WR, Schwertmann U (1975) The formation of hematite from amorphous iron (III) hydroxide. Clay Clay Miner 23:33–37

    Article  Google Scholar 

  17. Froment F, Tournié A, Colomban P (2008) Raman identification of natural red to yellow pigments: ochre and iron-containing ores. J Raman Spectrosc 39:560–568

    Article  Google Scholar 

  18. Hassanjani-Roshan A, Vaezi M, Shokuhfar A, Rajabali Z (2011) Synthesis of iron oxide nanoparticles via sonochemical method and their characterization. Particuology 9:95–99

    Article  Google Scholar 

  19. Itoh H, Sugimoto T (2003) Systematic control of size, shape, structure, and magnetic properties of uniform magnetite and maghemite particles. J Colloid Interface Sci 265:283–295

    Article  Google Scholar 

  20. Jia B, Gao L (2008) Growth of well-defined cubic hematite single crystals: oriented aggregation and Ostwald ripening. Cryst Growth Des 8:1372–1376

    Article  Google Scholar 

  21. Jia B, Gao L, Sun J (2007) Synthesis of single crystalline hematite polyhedral nanorods via a facile hydrothermal process. J Am Ceram Soc 90:1315–1318

    Article  Google Scholar 

  22. Khan GG, Sarkar D, Singh AK, Mandal K (2013) Enhanced band gap emission and ferromagnetism of Au nanoparticles decorated α-Fe2O3. RCS Adv 3:1722–1727

    Google Scholar 

  23. Kulkarni S, Lokhande C (2003) Structural, optical, electrical and dielectrical properties of electrosynthesized nanocrystalline iron oxide thin films. Mater Chem Phys 82:151–156

    Article  Google Scholar 

  24. Lee M, Park B, Chin I, Choi H (2009) Polymer modified hematite nanoparticles for electrophoretic display. J Electroceram 23:474–477

    Article  Google Scholar 

  25. Lin M, Tan HR, Tan JPY, Bai S (2013) Understanding the growth mechanism of α-Fe2O3 nanoparticles through a controlled shape transformation. J Phys Chem C 117:11242–11250

    Article  Google Scholar 

  26. Lu B, Li P, Liu H, Zhao L, Wei Y (2012) Synthesis of hexagonal pyramidal columnar hematite particles by a two-step solution route and their characterization. Powder Technol 215–216:132–136

    Article  Google Scholar 

  27. Navale S, Bandgar D, Nalage S, Khuspe G, Chougule M, Kolekar Y, Sen S, Patil V (2013) Synthesis of Fe2O3 nanoparticles for nitrogen dioxide gas sensing applications. Ceram Int 39:6453–6460

    Article  Google Scholar 

  28. Pu Z, Cao M, Yang J, Huang K, Hu C (2006) Controlled synthesis and growth mechanism of hematite nanorhombohedra, nanorods and nanocubes. Nanotechnology 17:799–804

    Article  Google Scholar 

  29. Sarkar D, Khan GG, Singh AK, Mandal K (2012) Enhanced electrical, optical, and magnetic properties in multifunctional ZnO/α-Fe2O3 semiconductor nanoheterostructure by heterojunction engineering. J Phys Chem C 116:23540–23546

    Article  Google Scholar 

  30. Schwertmann U, Friedl J, Stanjek H (1999) From Fe(III) ions to ferrihydrate and then to hematite. J Colloid Interface Sci 209:215–223

    Article  Google Scholar 

  31. Schwertmann U, Stanjek H, Becher HH (2004) Long-term in vitro transformation of 2-line ferrihydrate to goethite/hematite at 4, 10, 15 and 25°C. Clay Miner 39:433–438

    Article  Google Scholar 

  32. Sha G, Wang T, Xiao J, Liang C (2004) A mild solvothermal route to α-Fe2O3 nanoparticles. Mater Res Bull 39:1917–1921

    Article  Google Scholar 

  33. Tadić M, Čitaković N, Panjan M, Stojanović Z, Marković D (2011) Synthesis, morphology, microstructure and magnetic properties of hematite submicron particles. J Alloy Compd 509:7639–7644

    Article  Google Scholar 

  34. Xu Y, Yang S, Zhang G, Sun Y, Gao D, Sun Y (2011) Uniform hematite α-Fe2O3 nanoparticles: morphologies, size-controlled hydrothermal synthesis and formation mechanism. Mater Lett 65:1911–1914

    Article  Google Scholar 

  35. Yang S, Xu Y, Sun Y, Zhang G, Gao D (2012) Size-controlled synthesis, magnetic property, and photocatalytic property of uniform α-Fe2O3 nanoparticles via a facile additive-free hydrothermal route. Cryst Eng Comm 14:7915–7921

    Article  Google Scholar 

  36. Zhu M, Wang Y, Meng D, Qin X, Diao G (2012) Hydrothermal synthesis of hematite nanoparticles and their electrochemical properties. J Phys Chem C 116:16276–16285

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the Department of Energy through the National Energy Technology Laboratory under contract number DE-FE0005979. The authors appreciate the aid of Liz Bustamante for her assistance in language editing this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ning Liu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Khalil, M., Yu, J., Liu, N. et al. Hydrothermal synthesis, characterization, and growth mechanism of hematite nanoparticles. J Nanopart Res 16, 2362 (2014). https://doi.org/10.1007/s11051-014-2362-x

Download citation

Keywords

  • Hematite
  • Nanoparticles
  • Hydrothermal
  • TEM
  • Nanocrystals