Continuous supercritical hydrothermal synthesis of iron oxide nanoparticle dispersions and their characterization

  • M. Daschner de TerceroEmail author
  • C. Röder
  • U. Fehrenbacher
  • U. Teipel
  • M. Türk
Research Paper


Electrostatically stabilized iron oxide nanoparticle dispersions were synthesized using a continuous hydrothermal process at 673 K and 30 MPa. The average size of the primary particles was in the range 5–30 nm. The influence of the flow conditions as well as the composition of the starting material on the dispersion properties was investigated. A new Raman spectroscopic measurement setup was used for the characterization of the structure of the nanoparticles in dispersed form. The use of differential centrifugal sedimentation for the determination of the size distribution of the dispersed particles proved to be convenient and powerful to determine the influence of the investigated parameters on the dispersion properties. For certain compositions of the starting material and flow conditions using a conventional T-union, narrow size distributions concerning both primary particles and agglomerates could be obtained.


Hydrothermal synthesis Iron oxides Metal oxide nanoparticles Raman spectroscopy Supercritical water Differential centrifugal sedimentation 



This work was carried out with the support of the Fraunhofer-Gesellschaft. The assistance of J. Graf, S. Unser, D. Rückert (building up and maintaining the high-pressure pilot plant), J. Schubert, F. Keilmann, C. Mönius, M. Zang (carrying out experimental runs), W. Send, C. Kübel (TEM), U. Förter-Barth, M. Herrmann (PXRD), L. Tercero Espinoza (assistance in programming with “R” for conveniently processing and visualizing data), and G. Irmer (Raman spectroscopy) is gratefully acknowledged.

Supplementary material

11051_2014_2350_MOESM1_ESM.pdf (3.8 mb)
Supplementary material 1 (pdf 3913 KB)


  1. Adschiri T, Arai K (2002) Hydrothermal synthesis of metal oxide nanoparticles under supercritical conditions, New York, pp 311–326Google Scholar
  2. Adschiri T, Kanazawa K, Arai K (1992) Rapid and continuous hydrothermal crystallization of metal oxide particles in supercritical water. J Am Ceram Soc 75(4):1019–22CrossRefGoogle Scholar
  3. Aizawa T, Masuda Y, Minami K, Kanakubo M, Nanjo H, Smith RL (2007) Direct observation of channel-tee mixing of high-temperature and high-pressure water. J Supercrit Fluids 43(2):222–227CrossRefGoogle Scholar
  4. Balmer JA, Le Cunff EC, Armes SP, Murray MW, Murray KA, Williams NSJ (2010) When does silica exchange occur between vinyl polymer-silica nanocomposite particles and sterically stabilized latexes? Langmuir 26(16):13662–13671CrossRefGoogle Scholar
  5. Beattie IR, Gilson TR (1970) The single-crystal Raman spectra of nearly opaque materials. Iron(III) oxide and chromium(III) oxide. J Chem Soc A 980–986Google Scholar
  6. Bell NC, Minelli C, Tompkins J, Stevens MM, Shard AG (2012) Emerging techniques for submicrometer particle sizing applied to Stöber silica. Langmuir 28(29):10860–10872CrossRefGoogle Scholar
  7. Bersani D, Lottici PP, Montenero A (1999) Micro-Raman investigation of iron oxide films and powders produced by sol–gel syntheses. J Raman Spectrosc 30(5):355–360CrossRefGoogle Scholar
  8. Blood PJ, Denyer JP, Azzopardi BJ, Poliakoff M, Lester E (2004) A versatile flow visualisation technique for quantifying mixing in a binary system: application to continuous supercritical water hydrothermal synthesis (SWHS). Chem Eng Sci 59(14):2853–2861CrossRefGoogle Scholar
  9. Bremholm M, Felicissimo M, Iversen BB (2009) Time-resolved in situ synchrotron X-ray study and large-scale production of magnetite nanoparticles in supercritical water. Angew Chem Int Ed 48(26):4788–4791CrossRefGoogle Scholar
  10. Cabanas A, Poliakoff M (2001) The continuous hydrothermal synthesis of nano-particulate ferrites in near critical and supercritical water. J Mater Chem 11:1408–1416CrossRefGoogle Scholar
  11. Chernyshova IV, Hochella MF Jr, Madden AS (2007) Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition. Phys Chem Chem Phys 9(14):1736–1750CrossRefGoogle Scholar
  12. Chourpa I, Douziech-Eyrolles L, Ngaboni-Okassa L, Fouquenet JF, Cohen-Jonathan S, Souce M, Marchais H, Dubois P (2005) Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy. Analyst 130(10):1395–1403CrossRefGoogle Scholar
  13. Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  14. Das S, Hendry MJ (2011) Application of Raman spectroscopy to identify iron minerals commonly found in mine wastes. Chem Geol 290(3–4):101–108CrossRefGoogle Scholar
  15. Daschner de Tercero M, Dresel A, Fehrenbacher U, Hirth T, Teipel U (2008) Kontinuierliche Herstellung von oxidischen Nanopartikeln in überkritischem Wasser. Fraunhofer IRB Verlag, StuttgartGoogle Scholar
  16. Daschner de Tercero M, Bruns M, Türk M, Fehrenbacher U, Jennewein S, Barner L (2013) Continuous hydrothermal synthesis of in situ functionalized iron oxide nanoparticles: a general strategy to produce metal oxide nanoparticles with clickable anchors. Part Part Syst Char 30(3):229–234CrossRefGoogle Scholar
  17. El Mendili Y, Bardeau JF, Randrianantoandro N, Gourbil A, Greneche JM, Mercier AM, Grasset F (2011) New evidences of in situ laser irradiation effects on \(\gamma {\rm -}\text{Fe}_2\text{O}_3\) nanoparticles: a Raman spectroscopic study. J Raman Spectrosc 42(2):239–242Google Scholar
  18. Glasscock JA, Barnes PRF, Plumb IC, Bendavid A, Martin PJ (2008) Structural, optical and electrical properties of undoped polycrystalline hematite thin films produced using filtered arc deposition. Thin Solid Films 516(8):1716–1724CrossRefGoogle Scholar
  19. Gruar RI, Tighe CJ, Darr JA (2013) Scaling-up a confined jet reactor for the continuous hydrothermal manufacture of nanomaterials. Ind Eng Chem Res 52(15):5270–5281CrossRefGoogle Scholar
  20. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021CrossRefGoogle Scholar
  21. Hakuta Y, Onai S, Terayama S, Adschiri T, Arai K (1998) Production of ultra-fine ceria particles by hydrothermal synthesis under supercritical conditions. J Mater Sci Lett 17(14):1211–1213CrossRefGoogle Scholar
  22. Hakuta Y, Haganuma T, Sue K, Adschiri T, Arai K (2003) Continuous production of phosphor YAG:Tb nanoparticles by hydrothermal synthesis in supercritical water. Mater Res Bull 38(7):1257–1265CrossRefGoogle Scholar
  23. Hanesch M (2009) Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies. Geophys J Int 177(3):941–948CrossRefGoogle Scholar
  24. Hayashi H, Hakuta Y (2010) Hydrothermal synthesis of metal oxide nanoparticles in supercritical water. Materials 3(7):3794–3817CrossRefGoogle Scholar
  25. Hayashi H, Ueda A, Suino A, Hiro K, Hakuta Y (2009) Hydrothermal synthesis of yttrium stabilized \(\text{ZrO}_2\) nanoparticles in subcritical and supercritical water using a flow reaction system. J Solid State Chem 182(11):2985–2990Google Scholar
  26. Hayashi H, Noguchi T, Islam NM, Hakuta Y, Imai Y, Ueno N (2010a) Hydrothermal synthesis of \(\text{BaTiO}_3\) nanoparticles using a supercritical continuous flow reaction system. J Cryst Growth 312(12–13):1968–1972Google Scholar
  27. Hayashi H, Noguchi T, Islam NM, Hakuta Y, Imai Y, Ueno N (2010b) Hydrothermal synthesis of organic hybrid \(\text{BaTiO}_3\) nanoparticles using a supercritical continuous flow reaction system. J Cryst Growth 312(24):3613–3618Google Scholar
  28. Hayashi H, Suino A, Shimoyama K, Takesue M, Tooyama S Jr, RLS (2013) Continuous hydrothermal synthesis of \(\text{ZnGa}_2\text{O}_4{\rm :}\text{Mn}^{2+}\) nanoparticles at temperatures of 300–500 and pressures of 25–35 MPa. J Supercrit Fluids 77:1–6Google Scholar
  29. Hellwege KH, Hellwege M (eds) (1962) Landolt-Börnstein: Zahlenwerte und Funktionen aus Physik, Astronomie, Geophysik und Technik, 6. Auflage, II. Band Eigenschaften der Materien in ihren Aggregatzuständen, 8.Teil Optische Konstanten. Springer, BerlinGoogle Scholar
  30. Hong SA, Kim SJ, Chung KY, Chun MS, Lee BG, Kim J (2013) Continuous synthesis of lithium iron phosphate (\(\text{LiFePO}_4\)) nanoparticles in supercritical water: effect of mixing tee. J Supercrit Fluids 73:70–79Google Scholar
  31. Jacintho GVM, Corio P, Rubim JC (2007) Surface-enhanced Raman spectra of magnetic nanoparticles adsorbed on a silver electrode. J Electroanal Chem 603(1):27–34CrossRefGoogle Scholar
  32. Jambor JL, Dutrizac JE (1998) Occurrence and constitution of natural and synthetic ferrihydrite, a widespread iron oxyhydroxide. Chem Rev 98(7):2549–2586CrossRefGoogle Scholar
  33. Jubb AM, Allen HC (2010) Vibrational spectroscopic characterization of hematite, maghemite, and magnetite thin films produced by vapor deposition. ACS Appl Mater Inter 2(10):2804–2812CrossRefGoogle Scholar
  34. Kamiti M, Popadowski S, Remsen EE (2007) Advances in the characterization of particle size distributions of abrasive particles used in CMP. Mater Res Soc Symp Proc 991(0991—-C04–03):1–6Google Scholar
  35. Kawasaki SI, Sue K, Ookawara R, Wakashima Y, Suzuki A, Hakuta Y, Arai K (2010) Engineering study of continuous supercritical hydrothermal method using a T-shaped mixer: experimental synthesis of NiO nanoparticles and CFD simulation. J Supercrit Fluids 54(1):96–102CrossRefGoogle Scholar
  36. Lam UT, Mammucari R, Suzuki K, Foster NR (2008) Processing of iron oxide nanoparticles by supercritical fluids. Ind Eng Chem Res 47(3):599–614CrossRefGoogle Scholar
  37. Lester E, Blood P, Denyer J, Giddings D, Azzopardi B, Poliakoff M (2006) Reaction engineering: the supercritical water hydrothermal synthesis of nano-particles. J Supercrit Fluids 37(2):209–214CrossRefGoogle Scholar
  38. Longtin DR, Shettle EP, Hummel JR, Pryce JF (1988) A wind desert aerosol model: radiative properties. Sci Rep No 6, Air Force Geophys Lab, Air Force Syst Command, US Air ForceGoogle Scholar
  39. Lübbe M, Gigler AM, Stark RW, Moritz W (2010) Identification of iron oxide phases in thin films grown on \(\text{Al}_2\text{O}_3\) (0 0 0 1) by Raman spectroscopy and X-ray diffraction. Surf Sci 604(7–8):679–685Google Scholar
  40. Mae K, Suzuki A, Maki T, Hakuta Y, Sato H, Arai K (2007) A new micromixer with needle adjustment for instant mixing and heating under high pressure and high temperature. J Chem Eng Jpn 40(12):1101–1107CrossRefGoogle Scholar
  41. Mazzetti L, Thistlethwaite PJ (2002) Raman spectra and thermal transformations of ferrihydrite and schwertmannite. J Raman Spectrosc 33(2):104–111CrossRefGoogle Scholar
  42. Michel FM, Ehm L, Antao SM, Lee PL, Chupas PJ, Liu G, Strongin DR, Schoonen MAA, Phillips BL, Parise JB (2007) The structure of ferrihydrite, a nanocrystalline material. Science 316(5832):1726–1729CrossRefGoogle Scholar
  43. Middelkoop V, Boldrin P, Peel M, Buslaps T, Barnes P, Darr JA, Jacques SDM (2009) Imaging the inside of a continuous nanoceramic synthesizer under supercritical water conditions using high-energy synchrotron X-radiation. Chem Mat 21(12):2430–2435CrossRefGoogle Scholar
  44. Nadler M, Mahrholz T, Riedel U, Schilde C, Kwade A (2008) Preparation of colloidal carbon nanotube dispersions and their characterisation using a disc centrifuge. Carbon 46(11):1384–1392CrossRefGoogle Scholar
  45. Noguchi T, Matsui K, Islam NM, Hakuta Y, Hayashi H (2008) Rapid synthesis of \(\gamma\)-Al\(_2\)O\(_3\) nanoparticles in supercritical water by continuous hydrothermal flow reaction system. J Supercrit Fluids 46(2):129–136CrossRefGoogle Scholar
  46. Peak D, Regier T (2012) Direct observation of tetrahedrally coordinated Fe(III) in ferrihydrite. Environ Sci Technol 46(6):3163–3168CrossRefGoogle Scholar
  47. Reid E, Cooney R, Hendra P, Fleischmann M (1977) A Raman spectroscopic study of corrosion of lead electrodes in aqueous chloride media. J Electroanal Chem 80:405–408CrossRefGoogle Scholar
  48. Sasaki T, Ohara S, Naka T, Vejpravova J, Sechovsky V, Umetsu M, Takami S, Jeyadevan B, Adschiri T (2010) Continuous synthesis of fine \(\text{MgFe}_2\text{O}_4\) nanoparticles by supercritical hydrothermal reaction. J Supercrit Fluids 53(1–3):92–94Google Scholar
  49. Schwertmann U, Cornell RM (2000) Iron oxides in the laboratory: preparation and characterization, 2nd edn. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  50. Sousa MH, Tourinho FA, Rubim JC (2000) Use of Raman micro-spectroscopy in the characterization of \(\text{M}^{{\rm II}}\text{Fe}_2\text{O}_4\) (M = Fe, Zn) electric double layer ferrofluids. J Raman Spectrosc 31(3):185–191Google Scholar
  51. Sue K, Sato T, Si Kawasaki, Takebayashi Y, Yoda S, Furuya T, Hiaki T (2010) Continuous hydrothermal synthesis of \(\text{Fe}_2\text{O}_3\) nanoparticles using a central collision-type micromixer for rapid and homogeneous nucleation at 673 K and 30 MPa. Ind Eng Chem Res 49(18):8841–8846Google Scholar
  52. Sue K, Si Kawasaki, Suzuki M, Hakuta Y, Hayashi H, Arai K, Takebayashi Y, Yoda S, Furuya T (2011) Continuous hydrothermal synthesis of \(\text{Fe}_2\text{O}_3\), NiO, and CuO nanoparticles by superrapid heating using a T-type micro mixer at 673 K and 30 MPa. Chem Eng J 166(3):947–953Google Scholar
  53. Thibeau RJ, Brown CW, Heidersbach RH (1978) Raman spectra of possible corrosion products of iron. Appl Spectrosc 32(6):532–535CrossRefGoogle Scholar
  54. Tyrsted C, Becker J, Hald P, Bremholm M, Pedersen JS, Chevallier J, Cerenius Y, Iversen SB, Iversen BB (2010) In-situ synchrotron radiation study of formation and growth of crystalline \(\text{Ce}_x\text{Zr}_{1-x}\text{O}_2\) nanoparticles synthesized in supercritical water. Chem Mater 22(5):1814–1820Google Scholar
  55. Vangelista S, Mantovan R, Cocco S, Lamperti A, Salicio O, Fanciulli M (2012) Chemical vapor deposition growth of \(\text{Fe}_3\text{O}_4\) thin films and \(\text{Fe/Fe}_3\text{O}_4\) bi-layers for their integration in magnetic tunnel junctions. Thin Solid Films 520(14):4617–4621Google Scholar
  56. Wang J, White WB, Adair JH (2005) Optical properties of hydrothermally synthesized hematite particulate pigments. J Am Ceram Soc 88(12):3449–3454CrossRefGoogle Scholar
  57. Zhou L, Yuan J, Wei Y (2011) Core-shell structural iron oxide hybrid nanoparticles: from controlled synthesis to biomedical applications. J Mater Chem 21(9):2823–2840CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • M. Daschner de Tercero
    • 1
    • 2
    • 5
    Email author
  • C. Röder
    • 3
  • U. Fehrenbacher
    • 1
  • U. Teipel
    • 4
  • M. Türk
    • 5
  1. 1.Fraunhofer Institute for Chemical Technology ICTPfinztalGermany
  2. 2.Projektträger Karlsruhe (PTKA)Karlsruhe Institute of Technology (KIT)Eggenstein-LeopoldshafenGermany
  3. 3.Institut für Theoretische PhysikTechnische Universität Bergakademie FreibergFreibergGermany
  4. 4.Particle TechnologyTechnische Hochschule NürnbergNurembergGermany
  5. 5.Institute for Technical Thermodynamics and RefrigerationKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations