Skip to main content
Log in

The effect of substrate distance to evaporation source on morphology of ZnO:In nanorods fabricated by means of a vapor transfer route and the study of their optical and electrical properties

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

High-quality polycrystalline and single crystalline Indium-doped ZnO (ZnO:In) nanorods (NRs) have been synthesized on Si (100) substrates via a vapor transfer route in an oxygen-rich tube furnace. The morphology of the nanostructures and their distribution on the surface is highly related to distance between the substrate and evaporation sources. The morphology can be adjusted from micro-porous film to the vertically aligned hexagonal NRs by this distance. The diameter of the grown NRs varies between 50 and 200 nm, and their length mostly changes from 1 to 3 mm. EDS analysis indicated the presence of zinc, oxygen, and indium in the structures. FTIR measurements confirmed the existence of Zn–O and In–O bands in ZnO:In NRs. X-ray diffractions and SAED patterns showed that the vertically aligned hexagonal NRs have a preferential orientation along the (002) direction. Room-temperature photoluminescence (PL) spectra of NRs are dominated by a green band emission between 420 and 700 nm. The peak of the green emission has shifted in different samples, which is probably due to indium impurity. The results of the electrical transport measurement of the NRs showed that the amount of In impurity is effective in the increase of samples’ conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Arnold MS, Avouris P, Pan ZW, Wang ZL (2003) Field-effect transistors based on single semiconducting oxide nanobelts. J Phys Chem B 107(3):659–663. doi:10.1021/jp0271054

    Article  Google Scholar 

  • Audebrand N, Auffredic JP, Louer D (1998) X-ray diffraction study of the early stages of the growth of nanoscale zinc oxide crystallites obtained from thermal decomposition of four precursors. general concepts on precursor-dependent microstructural properties. Chem Mater 10(9):2450–2461. doi:10.1021/cm980132f

    Article  Google Scholar 

  • Babar AR, Deshamukh PR, Deokate RJ, Haranath D, Bhosale CH, Rajpure KY (2008) Gallium doping in transparent conductive ZnO thin films prepared by chemical spray pyrolysis. J Phys D 41:135404. doi:10.1088/0022-3727/41/13/135404

    Article  Google Scholar 

  • Bae SY, Na CW, Kang JH, Park JH (2005) Low-temperature synthesis of single crystalline Ag2S nanowires on silver substrates. J Phys Chem B 109:2526–2531. doi:10.1021/jp050126o

    Article  Google Scholar 

  • Chakraborti D, Prater J, Narayan J (2007) Room temperature ferromagnetism in Zn1−xCuxO thin films. Appl Phys Lett 90:062504. doi:10.1063/1.2450652

    Article  Google Scholar 

  • Chen YW, Liu YC, Lu SX, Xu CS, Shao CL, Wang C, Zhang JY, Lu YM, Shen DZ, Fan XW (2005) Optical properties of ZnO and ZnO:In nanorods assembled by sol-gel method. J Chem Phys 123:134701. doi:10.1063/1.2009731

    Article  Google Scholar 

  • Chen CH, Chang SJ, Chang SP, Li MJ, Chen IC, Hsueh TJ, Hsu CL (2009a) Electroluminescence from n-ZnO nanowires/p-GaN heterostructure light-emitting diodes. Appl Phys Lett 95:223101. doi:10.1063/1.3263720

    Article  Google Scholar 

  • Chen KJ, Hung FY, Chang SJ, Hu ZS (2009b) Microstructures, optical and electrical properties of In-doped ZnO thin films prepared by sol–gel method. Appl Surf Sci 255:6308–6312

    Article  Google Scholar 

  • Chirakkara S, Nanda KK, Krupanidhi SB (2011) Pulsed laser deposited ZnO:In as transparent conducting oxide. Thin Solid Films 519(11):3647–3652. doi:10.1016/j.tsf.2011.01.354

    Article  Google Scholar 

  • Conley JF Jr, Stecker L, Ono Y (2005) Directed assembly of ZnO nanowires on a Si substrate without a metal catalyst using a patterned ZnO seed layer. Nanotechnology 16:292. doi:10.1088/0957-4484/16/2/020

    Article  Google Scholar 

  • Fang TH, Kang SH (2008) Effect of indium dopant on surface and mechanical characteristics of ZnO:In nanostructured films. J Phys D Appl Phys 41(24):245303. doi:10.1088/0022-3727/41/24/245303

    Article  Google Scholar 

  • Fang TH, Kang SH (2010) Optical and physical characteristics of In-doped ZnO nanorods. Curr Appl Phys 10:1076–1086. doi:10.1016/j.cap.2010.01.001

    Article  Google Scholar 

  • Fang TH, Chang WJ, Lin CM (2007) Nanoindentation characterization of ZnO thin films. Mater Sci Eng A 452–453:715–720. doi:10.1016/j.msea.2006.11.008

    Article  Google Scholar 

  • Fang F, Zhao DX, Zhang JY, Shen DZ, Lu YM, Fan XW, Li BH, Wang XH (2008) The influence of growth temperature on ZnO nanowires. Mater Lett 62:1092–1095

    Article  Google Scholar 

  • Fang Y, Wong KM, Lei Y (2012) Synthesis and field emission properties of different ZnO nanostructure arrays. Nanoscale Res Lett 7:197. doi:10.1186/1556-276X-7-197

    Article  Google Scholar 

  • Fortunato E et al (2006) High mobility amorphous/nanocrystalline indium zinc oxide deposited at room temperature. Thin Solid Films 502(1–2):104–107. doi:10.1016/j.tsf.2005.07.311

    Article  Google Scholar 

  • Fujihara S, Ogawa Y, Kasai A (2004) Tunable visible photoluminescence from ZnO thin films through Mg-doping and annealing. Chem Mater 16(15):2965–2968. doi:10.1021/cm049599i

    Article  Google Scholar 

  • Ghafouri V, Shariati M, Ebrahimzad A (2012) Photoluminescence investigation of crystalline undoped ZnO nanostructures constructed by RF sputtering. Scientia Iranica F 19(3):934–942. doi:10.1016/j.scient.2012.04.017

    Article  Google Scholar 

  • Ghafouri V, Ebrahimzad A, Shariati M (2013) The effect of annealing time and temperature on morphology and optical properties of ZnO nanostructures grown by a self-assembly method. Scientia Iranica F 20(3):1039–1048. doi:10.1016/j.scient.2013.02.025

    Google Scholar 

  • Hafdallah A, Yanineb F, Aida MS, Attaf N (2011) In doped ZnO thin films. J Alloys Compd 509:7267–7270. doi:10.1016/j.jallcom.2011.04.058

    Article  Google Scholar 

  • Haga K, Suzuki T, Kashiwaba Y, Watanabe H, Zhang BP, Segawa Y (2003) High quality ZnO films prepared on Si wafers by low-pressure MO-CVD. Thin Solid Films 433(1–2):131–134. doi:10.1016/S0040-6090(03)00327-4

    Article  Google Scholar 

  • Ham H, Shen G, Cho JH, Lee TJ, Seo SH, Lee C (2005) Vertically aligned ZnO nanowires produced by a catalyst-free thermal evaporation method and their field emission properties. Chem Phys Lett 404(1–3):69–73. doi:10.1016/j.cplett.2005.01.084

    Article  Google Scholar 

  • Hossein-Babaei F, Taquibakhsh F (2000) Electrophoretically deposited zinc oxide thick film gas sensor. Electron Lett 36:1815–1816

    Article  Google Scholar 

  • Hsu CL, Hsueh TJ, Chang SP (2008) Preparation of ZnO nanoflakes and a nanowire-based photodetector by localized oxidation at low temperature. J Electrochem Soc 155(3):K59–K62. doi:10.1149/1.2829980

    Article  Google Scholar 

  • Hsueh TJ, Hsu CL (2008) Fabrication of gas sensing devices with ZnO nanostructure by the low-temperature oxidation of zinc particles. Sens Actuators B 131(2):572–576. doi:10.1016/j.snb.2007.12.045

    Article  Google Scholar 

  • Hsueh TJ, Hsu CL, Chang SJ, Guo PW, Hsieh JH, Chen IC (2007) Cu2O/n-ZnO nanowire solar cells on ZnO:Ga/glass templates. Scr Mater 57(1):53–56. doi:10.1016/j.scriptamat.2007.03.012

    Article  Google Scholar 

  • Huang MH, Mao S, Feick H, Yan HQ, Wu YY, Kind H, Weber E, Russo R, Yang PD (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292:1897. doi:10.1126/science.1060367

    Article  Google Scholar 

  • Ito N, Sato Y, Song PK, Kaijio A, Inoue K, Shigesato Y (2006) Electrical and optical properties of amorphous indium zinc oxide films. Thin Solid Films 496(1):99–103. doi:10.1016/j.tsf.2005.08.257

    Article  Google Scholar 

  • Jiang X, Wong FL, Fung MK, Lee ST (2003) Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices. Appl Phys Lett 83:1875. doi:10.1063/1.1605805

    Article  Google Scholar 

  • Jie JS, Wang GZ, Han XH, Hou JG (2004a) Synthesis and characterization of ZnO:In nanowires with superlattice structure. J Phys Chem B 108:17027–17031. doi:10.1021/jp0484783

    Article  Google Scholar 

  • Jie JS, Wang GZ, Han XH, Yu QX, Liao Y, Li GP, Hou JG (2004b) Indium-doped zinc oxide nanobelts. Chem Phys Lett 387(4–6):466–470. doi:10.1016/j.cplett.2004.02.045

    Article  Google Scholar 

  • Jin BJ, Im S, Lee SY (2000) Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition. Thin Solid Films 366:107–110. doi:10.1016/S0040-6090(00)00746-X

    Article  Google Scholar 

  • Jung MN, Lee ES, Jeon TI, Gil KS, Kim JJ, Murakami Y, Lee SH, Park SH, Lee HJ, Yao T, Makino H, Chang JH (2009) Synthesis and investigation on the extrinsic carrier concentration of indium doped ZnO tetrapods. J Alloys Compd 481:649–653

    Article  Google Scholar 

  • Jung MN, Koo JE, Kil GS, Park SH, Lee WJ, Oh DC, Lee HJ, Chang JH (2012) Enhanced field emission properties of indium-doped ZnO nanorods. J Ceramic Proces Res 13(1):1–4

    Google Scholar 

  • Kamalasanan MN, Chandra S (1996) Sol–gel synthesis of ZnO thin films. Thin Solid Films 288:112

    Article  Google Scholar 

  • Keskenler EF, Turgut G, Dogan S (2012) Investigation of structural and optical properties of ZnO films co-doped with fluorine and indium. Superlattice Microst 52:107–115

    Article  Google Scholar 

  • Khun K, Ibupoto ZH, AlSalhi MS, Atif M, Ansari AA, Willander M (2013) Fabrication of well-aligned ZnO nanorods using a composite seed layer of ZnO nanoparticles and chitosan polymer. Materials 6:4361–4374. doi:10.3390/ma6104361

    Article  Google Scholar 

  • Kim KH, Park KC, Ma TY (1997) Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering. J Appl Phys 81:7764. doi:10.1063/1.365556

    Article  Google Scholar 

  • Kim HM, Jung SK, Ahn JS, Kang YJ, Je KC (2003) Electrical and optical properties of In2O3–ZnO films deposited on polyethylene terephthalate substrates by radio frequency magnetron sputtering. Japan J Appl Phys 42:223. doi:10.1143/JJAP.42.223

    Article  Google Scholar 

  • Kim KK, Niki S, Oh JY, Song JO, Seong TY, Park SJ, Fujita S, Kim SW (2005) High electron concentration and mobility in Al-doped n-ZnO epilayer achieved via dopant activation using rapidthermal annealing. J Appl Phys 97(6):066103. doi:10.1063/1.1863416

    Article  Google Scholar 

  • Kleinwechter H, Janzen C, Knipping J, Wiggers H, Roth P (2002) Formation and properties of ZnO nano-particles from gas phase synthesis processes. J Mater Sci 37:4349

    Article  Google Scholar 

  • Kong YC, Yu DP, Zhang B, Fang W, Feng SQ (2001) Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach. Appl Phys Lett 78:407. doi:10.1063/1.1342050

    Article  Google Scholar 

  • Kumar KB, Raji P (2011) Synthesis and characterization of nano zinc oxide by sol gel spin coating. Recent research in science and technology 3(3):48–52

    Google Scholar 

  • Lee EC, Kim YS, Jin YG, Chang KJ (2001) First-principles study of the compensation mechanism in N-doped ZnO. Physica B 308–310:912–915. doi:10.1016/S0921-4526(01)00838-9

    Article  Google Scholar 

  • Lee JH, Ko KH, Park BO (2003) Electrical and optical properties of ZnO transparent conducting films by the sol–gel method. J Cryst Growth 247(1–2):119–125. doi:10.1016/S0022-0248(02)01907-3

    Article  Google Scholar 

  • Lee J, Easteal AJ, Pal U, Bhattacharyya D (2009) Evolution of ZnO nanostructures in sol–gel synthesis. Curr Appl Phys 9(4):792–796. doi:10.1016/j.cap.2008.07.018

    Article  Google Scholar 

  • Look DC, Hemsky JW, Sizelove JR (1999) Residual native shallow donor in ZnO. Phys Rev Lett 82(12):2552–2555. doi:10.1103/PhysRevLett.82.2552

    Article  Google Scholar 

  • Minami T, Sonohara H, Kakumu T, Takata S (1995) Highly transparent and conductive Zn2In2O5 thin films prepared by rf magnetron sputtering. Jpn J Appl Phys 34:L971–L974. doi:10.1143/JJAP.34.L971

    Article  Google Scholar 

  • Minami T, Yamamoto T, Toda Y, Miyata T (2000) Transparent conducting zinc-co-doped ITO films prepared by magnetron sputtering. Thin Solid Films 373(1–2):189–194. doi:10.1016/S0040-6090(00)01132-9

    Article  Google Scholar 

  • Oh MS, Hwang DK, Seong DJ, Hwang HS, Park SJ, Kim ED (2008) Improvement of characteristics of Ga-doped ZnO grown by pulsed laser deposition using plasma-enhanced oxygen radicals. J Electrochem Soc 155(9):D599–D603. doi:10.1149/1.2952077

    Article  Google Scholar 

  • Rey FQ, Plivelic TS, Rocha RA, Tadokoro SK, Torriani I, Muccillo ENS (2005) Synthesis of In2O3 nanoparticles by thermal decomposition of a citrate gel precursor. J Nanopart Res 7:203–208. doi:10.1007/s11051-004-7899-7

    Article  Google Scholar 

  • Seghier D, Gislason HP (2008) Shallow and deep donors in n-type ZnO characterized by admittance spectroscopy. J Mater Sci Mater Electron 19(8–9):687–691. doi:10.1007/s10854-007-9380-8

    Article  Google Scholar 

  • Sharma P, Kumar S, Sreenivas K (2003) Interaction of surface acoustic waves and ultraviolet light in ZnO films. J Mater Res 18:545. doi:10.1557/JMR.2003.0069

    Article  Google Scholar 

  • Shinde VR, Gujar TP, Lokhande CD, Mane RS, Han SH (2006) Mn doped and undoped ZnO films: a comparative structural, optical and electrical properties study. Mater Chem Phys 96(2–3):326–330. doi:10.1016/j.matchemphys.2005.07.045

    Article  Google Scholar 

  • Su J, Li H, Huang Y, Xing X, Zhao J, Zhang Y (2011) Electronic transport properties of In-doped ZnO nanobelts with different concentration. Nanoscale 3:2182–2187. doi:10.1039/C1NR10018A

    Article  Google Scholar 

  • Tubtimtae A, Lee MW (2012) ZnO nanorods on undoped and indium-doped ZnO thin films as a TCO layer on nonconductive glass for dye-sensitized solar cells. Superlattice Microst 52:987–996

    Article  Google Scholar 

  • Vanheusden K, Seager CH, Warren WL, Tallant DR, Voigt JA (1996a) Correlation between photoluminescence and oxygen vacancies in ZnO phosphors. Appl Phys Lett 68(3):403–405. doi:10.1063/1.116699

    Article  Google Scholar 

  • Vanheusden K, Warren WL, Seager CH, Tallant DR, Voigt JA, Gnade BE (1996b) Mechanisms behind green photoluminescence in ZnO phosphor powders. J Appl Phys 79:7983–7990. doi:10.1063/1.362349

    Article  Google Scholar 

  • Wander A, Schedin F, Steadman P, Norris A, McGrath R, Turner TS, Thornton G, Harrison NM (2001) Stability of polar oxide surfaces. Phys Rev Lett 86:3811–3814. doi:10.1103/PhysRevLett.86.3811

    Article  Google Scholar 

  • Water W, Chu SY (2002) Physical and structural properties of ZnO sputtered films. Mater Lett 55:67. doi:10.1016/S0167-577X(01)00621-8

    Article  Google Scholar 

  • Wu JJ, Liu SC (2002) Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition. Adv Mater 14:215–218. doi:10.1002/1521-4095(20020205)14:3<2

    Google Scholar 

  • Wu L, Wu Y, Pan X, Kong F (2006) Synthesis of ZnO nanorod and the annealing effect on its photoluminescence property. Opt Mater 28:418

    Article  Google Scholar 

  • Yaglioglu B, Yeom HY, Paine DC (2005) Crystallization of amorphous In2O3-10 wt% ZnO thin films annealed in air. Appl Phy Lett 86:261908. doi:10.1063/1.1977209

    Article  Google Scholar 

  • Yang H, Lee JS, Bae S, Hwang JH (2009) Density-controlled growth of ZnO nanorods using ZnO nanocrystals-embedded polymer composite. Curr Appl Phys 9(4):797–801. doi:10.1016/j.cap.2008.07.016

    Article  Google Scholar 

  • Yousefi R, Sheini FJ, Zak AK, Mahmoudian MR (2012) Effect of indium concentration on morphology and optical properties of In-doped ZnO nanostructures. Ceram Int 38:6295–6301

    Article  Google Scholar 

  • Zhao Q, Zhang HZ, Zhu YW, Feng SQ, Sun XC, Xu J, Yu DP (2005) Morphological effects on the field emission of ZnO nanorod arrays. Appl Phys Lett 86:203115. doi:10.1063/1.1931831

    Article  Google Scholar 

  • Zhao ZW, Tay BK, Chen JS, Hu JF, Lim BC, Li GP (2007) Large magnetic moment observed in Co-doped ZnO nanocluster-assembled thin films at room temperature. Appl Phys Lett 90:152502. doi:10.1063/1.2721140

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Ghafouri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghafouri, V., Shariati, M. & Ebrahimzad, A. The effect of substrate distance to evaporation source on morphology of ZnO:In nanorods fabricated by means of a vapor transfer route and the study of their optical and electrical properties. J Nanopart Res 16, 2309 (2014). https://doi.org/10.1007/s11051-014-2309-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2309-2

Keywords

Navigation