Colloidal synthesis and functional properties of quaternary Cu-based semiconductors: Cu2HgGeSe4

Abstract

Herein, a colloidal synthetic route to produce highly monodisperse Cu2HgGeSe4 (CHGSe) nanoparticles (NPs) is presented in detail. The high yield of the developed procedure allowed the production of CHGSe NPs at the gram scale. A thorough analysis of their structural and optical properties is shown. CHGSe NPs displayed poly-tetrahedral morphology and narrow size distributions with average size in the range of 10–40 nm and size dispersions below 10 %. A 1.6 eV optical band gap was measured by mean of UV–Vis. By adjusting the cation ratio, an effective control of their electrical conductivity is achieved. The prepared NPs are used as building blocks for the production of CHGSe bulk nanostructured materials. The thermoelectric properties of CHGSe nanomaterials are studied in the temperature range from 300 to 730 K. CHGSe nanomaterials reached electrical conductivities up to 5 × 104 S m−1, Seebeck coefficients above 100 μV K−1, and thermal conductivities below 1.0 W m−1 K−1 which translated into thermoelectric figures of merit up to 0.34 at 730 K.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Aldakov D, Lefrancois A, Reiss P (2013) Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications. J Mater Chem C 1:3756–3776

    Article  Google Scholar 

  2. Chen S, Gong XG, Duan C-G, Zhu Z-Q, Chu J-H, Walsh A, Yao Y-G, Ma J, Wei S-H (2011) Band structure engineering of multinary chalcogenide topological insulators. Phys Rev B 83(24):245202

    Article  Google Scholar 

  3. Davey WP (1923) Precision measurements of crystals of the alkali halides. Phys Rev 21(2):143–161

    Article  Google Scholar 

  4. Guo Q, Hillhouse HW, Agrawal R (2009) Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells. J Am Chem Soc 131(33):11672–11673

    Article  Google Scholar 

  5. Guo Q, Ford GM, Yang W-C, Walker BC, Stach EA, Hillhouse HW, Agrawal R (2010) Fabrication of 7.2 % efficient CZTSSe solar cells using CZTS nanocrystals. J Am Chem Soc 132(49):17384–17386

    Article  Google Scholar 

  6. Hirai T, Kurata K, Takeda Y (1967) Derivation of new semiconducting compounds by cross substitution for group IV semiconductors, and their semiconducting and thermal properties. Solid State Electron 10:975–981

    Article  Google Scholar 

  7. Ibáñez M, Guardia P, Shavel A, Cadavid D, Arbiol J, Morante JR, Cabot A (2011) Growth kinetics of asymmetric Bi2S3 nanocrystals: size distribution focusing in nanorods. J Phys Chem C 115(16):7947–7955

    Article  Google Scholar 

  8. Ibáñez M, Cadavid D, Zamani R, García-Castelló N, Izquierdo-Roca V, Li W et al (2012a) Composition control and thermoelectric properties of quaternary chalcogenide nanocrystals: the Case of stannite Cu2CdSnSe4. Chem Mater 24(3):562–570

    Article  Google Scholar 

  9. Ibáñez M, Zamani R, Lalonde A, Cadavid D, Li W, Shavel A et al (2012b) Cu2ZnGeSe4 nanocrystals: synthesis and thermoelectric properties. J Am Chem Soc 134(9):4060–4063

    Article  Google Scholar 

  10. Ibáñez M, Zamani R, Li W, Cadavid D, Gorsse S, Katcho NA et al (2012c) Crystallographic control at the nanoscale to enhance functionality: polytypic Cu2GeSe3 nanoparticles as thermoelectric materials. Chem Mater 24:4615–4622

    Article  Google Scholar 

  11. Ibáñez M, Zamani R, Li W, Shavel A, Arbiol J, Morante JR, Cabot A (2012d) Extending the nanocrystal synthesis control to quaternary compositions. Cryst Growth Des 12(3):1085–1090

    Article  Google Scholar 

  12. Ibáñez M, Cadavid D, Anselmi Tamburini U, Zamani R, Gorsse S, Li W et al (2013) Colloidal synthesis and thermoelectric properties of Cu2SnSe3 nanocrystals. J Mater Chem A 1(4):1421

    Article  Google Scholar 

  13. Li W, Shavel A, Guzman R, Rubio-Garcia J, Flox C, Fan J et al (2011) Morphology evolution of Cu(2−x)S nanoparticles: from spheres to dodecahedrons. Chem Commun 47(37):10332–10334

    Article  Google Scholar 

  14. Li W, Zamani R, Ibáñez M, Cadavid D, Shavel A, Morante JR, Arbiol J, Cabot A (2013a) Metal ions to control the morphology of semiconductor nanoparticles: copper selenide nanocubes. J Am Chem Soc 135(12):4664–4667

    Article  Google Scholar 

  15. Li W, Zamani R, Rivera Gil P, Pelaz B, Ibáñez M, Cadavid D et al (2013b) CuTe nanocrystals: shape and size control, plasmonic properties, and use as SERS probes and photothermal agents. J Am Chem Soc 135(19):7098–7101

    Article  Google Scholar 

  16. Liu M-L, Chen IW, Huang F-Q, Chen L-D (2009) Improved thermoelectric properties of Cu-doped quaternary chalcogenides of Cu2CdSnSe4. Adv Mater 21(37):3808–3812

    Article  Google Scholar 

  17. Manna L, Scher EC, Alivisatos AP (2000) Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J Am Chem Soc 122(51):12700–12706

    Article  Google Scholar 

  18. Mitzi DB, Gunawan O, Todorov TK, Wang K, Guha S (2011) The path towards a high-performance solution-processed kesterite solar cell. Sol Energy Mater Sol C 95(6):1421–1436

    Article  Google Scholar 

  19. Olekseyuk ID, Gulay LD, Dydchak IV, Piskach LV, Parasyuk OV, Marchuk OV (2002) Single crystal preparation and crystal structure of the Cu2Zn/Cd, Hg/SnSe4 compounds. J Alloys Compd 340(1–2):141–145

    Article  Google Scholar 

  20. Redinger A, Berg DM, Dale PJ, Siebentritt S (2011a) The consequences of kesterite equilibria for efficient solar cells. J Am Chem Soc 133(10):3320–3323

    Article  Google Scholar 

  21. Redinger A, Hönes K, Fontané X, Izquierdo-Roca V, Saucedo E, Valle N, Pérez-Rodríguez A, Siebentritt S (2011b) Detection of a ZnSe secondary phase in coevaporated Cu2ZnSnSe4 thin films. Appl Phys Lett 98(10):101903–101907

    Article  Google Scholar 

  22. Shavel A, Arbiol J, Cabot A (2010) Synthesis of quaternary chalcogenide nanocrystals: stannite Cu2Zn x SnySe1+x+2y . J Am Chem Soc 132(13):4514–4515

    Article  Google Scholar 

  23. Shavel A, Cadavid D, Ibáñez M, Carrete A, Cabot A (2012) Continuous production of Cu2ZnSnS4 nanocrystals in a flow reactor. J Am Chem Soc 134(3):1438–1441

    Article  Google Scholar 

  24. Singh A, Geaney H, Laffir F, Ryan KM (2012) Colloidal Synthesis of wurtzite Cu2ZnSnS4 nanorods and their perpendicular assembly. J Am Chem Soc 134(6):2910–2913

    Article  Google Scholar 

  25. Talapin DV, Yu H, Shevchenko EV, Lobo A, Murray CB (2007) Synthesis of colloidal PbSe/PbS core–shell nanowires and PbS/Au nanowire–nanocrystal heterostructures. J Phys Chem C 111(38):14049–14054

    Article  Google Scholar 

  26. Talapin DV, Lee J-S, Kovalenko MV, Shevchenko EV (2010) Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev 110(1):389–458

    Article  Google Scholar 

  27. Wang YJ, Lin H, Tanmoy D, Hasan MZ, Bansil A (2011) Topological insulators in the quaternary chalcogenide compounds and ternary famatinite compounds. New J Phys 13(8):085017

    Article  Google Scholar 

  28. Xue D-J, Jiao F, Yan H-J, Xu W, Zhu D, Guo Y-G, Wan L-J (2013) Synthesis of wurtzite Cu2ZnGeSe4 nanocrystals and their thermoelectric properties. Chem Asian J 8(2383):2387

    Google Scholar 

  29. Yin Y, Alivisatos AP (2005) Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437(7059):664–670

    Article  Google Scholar 

  30. Yokoyama D, Minegishi T, Jimbo K, Hisatomi T, Ma G, Katayama M, Kubota J, Katagiri H, Domen K (2010) H2 evolution from water on modified Cu2ZnSnS4 photoelectrode under solar light. Appl Phys Express 3(10):101202

    Article  Google Scholar 

  31. Zeier WG, LaLonde A, Gibbs ZM, Heinrich CP, Panthöfer M, Snyder GJ, Tremel W (2012) Influence of a nano phase segregation on the thermoelectric properties of the p-type doped stannite compound Cu2+xZn1−x GeSe4. J Am Chem Soc 134(16):7147–7154

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported by the European Regional Development Funds (ERDF, “FEDER Programa Competitivitat de Catalunya 2007–2013”).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andreu Cabot.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, W., Ibáñez, M., Cadavid, D. et al. Colloidal synthesis and functional properties of quaternary Cu-based semiconductors: Cu2HgGeSe4 . J Nanopart Res 16, 2297 (2014). https://doi.org/10.1007/s11051-014-2297-2

Download citation

Keywords

  • Quaternary nanoparticles
  • Colloidal synthesis
  • Nanomaterials
  • Thermoelectric