Skip to main content
Log in

In situ fabrication of Ag nanoparticles/attapulgite nanocomposites: green synthesis and catalytic application

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A facile solvents-free reaction method was employed to in situ prepare Ag nanoparticles/attapulgite (Ag-NPs/APT) nanocomposites and used for the catalytic reducing decoloration of Congo red (CR) dye. The Ag-NPs with different sizes and loading amounts were in situ formed by the thermal decomposition of silver acetate with no need of any chemical solvent, reductant, stabilizer, or electric current; and the formed Ag-NPs were uniformly immobilized on APT as shown by X-ray diffraction and transmission electron microscopy analyses. The nanocomposites show excellent catalytic activity to catalytic reducing CR dye in the presence of NaBH4, and the CR solution (20 mg/L) can be rapidly decolored within 2 min at the lower dosage of nanocomposite (0.3 g/L). The electron transfer from BH4 to the electron acceptor CR, mediated by Ag-NPs, represents the main reduction mechanism. The nanocomposite still shows better catalytic activity after ten cycles, hence it can be used as a recycle material for catalytic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdullayev E, Sakakibara K, Okamoto K, Wei WB, Ariga K, Lvov Y (2011) Natural tubule clay template synthesis of silver nanorods for antibacterial composite coating. ACS Appl Mater Interface 3:4040–4046

    Article  Google Scholar 

  • Afzal M, Butt PK, Ahrnad H (1991) Kinetics of thermal decomposition of metal acetates. J Therm Anal 37:1015–1023

    Article  Google Scholar 

  • Bokare AD, Chikate RC, Rode CV, Paknikar KM (2008) Iron–nickel bimetallic nanoparticles for reductive degradation of azo dye Orange G in aqueous solution. Appl Catal B: Environ 79:270–278

    Article  Google Scholar 

  • Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Article  Google Scholar 

  • Cabal B, Torrecillas R, Malpartida F, Moya JS (2010) Heterogeneous precipitation of silver nanoparticles on kaolinite plates. Nanotechnology 21:475705

    Article  Google Scholar 

  • Chiu CW, Hong PD, Lin JJ (2011) Clay-mediated synthesis of silver nanoparticles exhibiting low-temperature melting. Langmuir 27:11690–11696

    Article  Google Scholar 

  • Das MR, Sarma RK, Saikia R, Kale VS, Shelke MV, Sengupta P (2011) Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity. Colloids Surf B: Biointerface 83:16–22

    Article  Google Scholar 

  • Drits VA, Sokolova GV (1971) Structure of palygorskite. Sov Phys Crystallogr 16:183–185

    Google Scholar 

  • He MY, Zhu Y, Yang Y, Han BP, Zhang YM (2011) Adsorption of cobalt(II) ions from aqueous solutions by palygorskite. Appl Clay Sci 54:292–296

    Article  Google Scholar 

  • Huang HT, Yang Y (2008) Preparation of silver nanoparticles in inorganic clay suspensions. Compos Sci Technol 68:2948–2953

    Article  Google Scholar 

  • Huang DJ, Wang WB, Xu JX, Wang AQ (2012) Mechanical and water resistance properties of 1 chitosan/poly (vinyl alcohol) films reinforced with attapulgite dispersed by high-pressure homogenization. Chem Eng J 210:166–172

    Article  Google Scholar 

  • Huo CL, Yang HM (2012) Attachment of nickel oxide nanoparticles on the surface of palygorskite nanofibers. J Colloid Interface Sci 384:55–60

    Article  Google Scholar 

  • Jeevanandam P, Srikanth CK, Dixit S (2010) Synthesis of monodisperse silver nanoparticles and their self-assembly through simple thermal decomposition approach. Mater Chem Phys 122:402–407

    Article  Google Scholar 

  • Lee JA, Krogman KC, Ma M, Hill RM, Hammond PT, Rutledge GC (2009) Highly reactive multilayer-assembled TiO2 coating on electrospun polymer nanofibers. Adv Mater 21:1252–1256

    Article  Google Scholar 

  • Li W, Li J, Qiang WB, Xu JJ, Xu DK (2013) Enzyme-free colorimetric bioassay based on gold nanoparticle-catalyzed dye decolorization. Analyst 138:760–766

    Article  Google Scholar 

  • Liang F, Liu BZ, Deng YH, Yang SG, Sun C (2011) Preparation and characterization of attapulgite-silver nanocomposites, and their application to the electrochemical determination of nitrobenzene. Microchim Acta 174:407–412

    Article  Google Scholar 

  • Lin Y, Watson KA, Fallbach MJ, Ghose S, Smith JG, Delozier JDM, Cao W, Crooks RE, Connell JW (2009) Rapid, solventless, bulk preparation of metal nanoparticle-decorated carbon nanotubes. ACS Nano 3:871–884

    Article  Google Scholar 

  • Lin Y, Bunker CE, Fernando KAS, Connell JW (2012) Aqueously dispersed silver nanoparticle-decorated boron nitride nanosheets for reusable, thermal oxidation-resistant surface enhanced Raman spectroscopy (SERS) devices. ACS Appl Mater Interface 4:1110–1117

    Article  Google Scholar 

  • Logvinenko V, Polunina O, Mikhailov Y, Mikhailov K, Bokhonov B (2007) Study of thermal decomposition of silver acetate. J Therm Anal Calorim 90:813–816

    Article  Google Scholar 

  • Mahanta N, Valiyaveettil S (2012) In situ preparation of silver nanoparticles on biocompatible methacrylated poly (vinyl alcohol) and cellulose based polymeric nanofibers. RSC Adv 2:11389–11396

    Article  Google Scholar 

  • Patel AC, Li SX, Wang C, Zhang WJ, Wei Y (2007) Electrospinning of porous silica nanofibers containing silver nanoparticles for catalytic applications. Chem Mater 19:1231–1238

    Article  Google Scholar 

  • Praus P, Turicová M, Machovič V, Študentová S, Klementová M (2010) Characterization of silver nanoparticles deposited on montmorillonite. Appl Clay Sci 49:341–345

    Article  Google Scholar 

  • Rameshkumar P, Manivannan S, Ramaraj R (2013) Silver nanoparticles deposited on amine-functionalized silica spheres and their amalgamation-based spectral and colorimetric detection of Hg(II) ions. J Nanopart Res 15:1639

    Article  Google Scholar 

  • Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50:962–1079

    Article  Google Scholar 

  • Redl FX, Black CT, Papaefthymiou GC, Sandstrom RL, Yin M, Zeng H, Murray CB, O’Brien SP (2004) Magnetic, Electronic, and structural characterization of nonstoichiometric iron oxides at the nanoscale. J Am Chem Soc 126:14583–14599

    Article  Google Scholar 

  • Sahoo S, Husale S, Karna S, Nayak SK, Ajayan PM (2011) Controlled assembly of Ag nanoparticles and carbon nanotube hybrid structures for biosensing. J Am Chem Soc 133:4005–4009

    Article  Google Scholar 

  • Shameli K, Ahmad MB, Yunus WZW, Ibrahim NA, Darroudi M (2010) Synthesis and characterization of silver/talc nanocomposites using the wet chemical reduction method. Int J Nanomed 5:743–751

    Article  Google Scholar 

  • Shankar R, Groven L, Amert A, Whites KW, Kellar JJ (2011) Non-aqueous synthesis of silver nanoparticles using tin acetate as a reducing agent for the conductive ink formulation in printed electronics. J Mater Chem 21:10871–10877

    Article  Google Scholar 

  • Sui CH, Li C, Guo XH, Cheng TX, Gao YK, Zhou GD, Gong J, Du JS (2012) Facile synthesis of silver nanoparticles-modified PVA/H4SiW12O40 nanofibers-based electrospinning to enhance photocatalytic activity. Appl Surf Sci 258:7105–7111

    Article  Google Scholar 

  • Uznanski P, Bryszewska E (2010) Synthesis of silver nanoparticles from carboxylate precursors under hydrogen pressure. J Mater Sci 45:1547–1552

    Article  Google Scholar 

  • Vidhu VK, Philip D (2014) Catalytic degradation of organic dyes using biosynthesized silver nanoparticles. Micron 56:54–62

    Article  Google Scholar 

  • Xu ZX, Hu GX (2012) Simple and green synthesis of monodisperse silver nanoparticles and surface-enhanced Raman scattering activity. RSC Adv 2:11404–11409

    Article  Google Scholar 

  • Xu JX, Zhang JP, Wang Q, Wang AQ (2011) Disaggregation of palygorskite crystal bundles via high-pressure homogenization. Appl Clay Sci 54:118–123

    Article  Google Scholar 

  • Yan Y, Sun HP, Yao PP, Kang SZ, Mu J (2011) Appl Surf Sci 257:3620–3626

    Article  Google Scholar 

  • Yao YL, Ding Y, Ye LS, Xia XH (2006) Two-step pyrolysis process to synthesize highly dispersed Pt–Ru/carbon nanotube catalysts for methanol electrooxidation. Carbon 44:61–66

    Article  Google Scholar 

  • Zhang YT, Chen YF, Zhang HQ, Zhang B, Liu JD (2013) Potent antibacterial activity of a novel silver nanoparticle–halloysite nanotube nanocomposite powder. J Inorg Biochem 118:59–64

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Science and Technology Support Project of Jiangsu Provincial Sci. & Tech. Department (No. BE2012113) and “863” Project of the Ministry of Science and Technology, P. R. China (No. 2013AA031403) for the financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiqin Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1058 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Kang, Y. & Wang, A. In situ fabrication of Ag nanoparticles/attapulgite nanocomposites: green synthesis and catalytic application. J Nanopart Res 16, 2281 (2014). https://doi.org/10.1007/s11051-014-2281-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2281-x

Keywords

Navigation