Skip to main content
Log in

Effect of phosphorus and copper additions on the structure of Pt and Pt–Cu nanoparticles in a radiation-induced reduction method

  • Brief Communication
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The effects of phosphorus (PH2O2 ) and copper (Cu2+) additions to the aqueous precursor solution on the structure of Pt–Cu nanoparticles were investigated for a radiation-induced reduction method. Addition of PH2O2 in the precursor solution reduced the diffraction intensity of Pt or Pt–Cu crystallites due to smaller size and/or lower crystallinity. Both the diffraction intensity and the particle size (measured by an electron microscope) were minimized when Cu/Pt ratio was 0.05–0.25, which was attributed to the effects of copper and phosphorus to stabilize crystallites and particles through the negative heat of mixing. The concomitant increase in phosphorus content suggested that PH2O2 is partly reduced and taken into the Pt lattice. Further increase of copper content caused larger particles and decrease in phosphorus content. These trends were also consistent with electrochemical surface area and oxidation/reduction behavior of Pt surface. The radiation-induced reduction method is suited to produce small Pt–Cu particles uniformly distributed on carbon support, which are potentially served for heat treatment for improved oxygen reduction performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Belloni J, Mostafavi M (2001) Radiation chemistry of nanocolloids and clusters. Stud Phys Theor Chem Radiat Chem Present Status Future Trends 87:411–452. doi:10.1016/S0167-6881(01)80018-5

    Article  Google Scholar 

  • Belloni J, Mostafavi M, Remita H, Marignier JL, Delcourt MO (1998) Radiation-induced synthesis of mono- and multi-metallic clusters and nanocolloids. New J Chem 22:1239–1255. doi:10.1039/A801445K

    Article  Google Scholar 

  • Daimon H, Kurobe Y (2006) Size reduction of PtRu catalyst particle deposited on carbon support by addition of non-metallic elements. Catal Today 111:182–187. doi:10.1016/j.cattod.2005.10.023

    Article  Google Scholar 

  • Daimon H, Kitakami O, Fujiwara H (1989) A new method for controlling coercivity of iron deposited alumite films. J Magn Soc Jpn Suppl 13:795–800

    Google Scholar 

  • Dutta I, Carpenter MK, Balogh MP, Ziegelbauer JM, Moylan TE, Atwan MH, Irish NP (2010) Electrochemical and structural study of a chemically dealloyed PtCu oxygen reduction catalyst. J Phys Chem C 114:16309–16320. doi:10.1021/jp106042z

    Article  Google Scholar 

  • Gomez R, Orts JM, Alvarez-Ruiz B, Feliu JM (2004) Effect of temperature on hydrogen adsorption on Pt(111), Pt(110), and Pt(100) electrodes in 0.1 M HClO4. J Phys Chem B 108:228–238. doi:10.1021/jp034982g

    Article  Google Scholar 

  • Ida T, Shimazaki S, Hibino H, Toraya H (2003) Diffraction peak profiles from spherical crystallites with lognormal size distribution. J Appl Cryst 36:1107–1115. doi:10.1107/S0021889803011580

    Article  Google Scholar 

  • Jayasayee K, Van Veen JAR, Manivasagam TG, Celebi S, Hensen EJM, de Bruijn FA (2012) Oxygen reduction reaction (ORR) activity and durability of carbon supported PtM (Co, Ni, Cu) alloys: influence of particle size and non-noble metals. Appl Catal B 111:515–526. doi:10.1016/j.apcatb.2011.11.003

    Article  Google Scholar 

  • Koh S, Strasser P (2007) Electrocatalysis on bimetallic surfaces: modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying. J Am Chem Soc 129:12624–12625. doi:10.1021/ja0742784

    Article  Google Scholar 

  • Kugai J, Kitagawa R, Seino S, Nakagawa T, Ohkubo Y, Nitani H, Daimon H, Yamamoto TA (2011) γ-Fe2O3-supported Pt–Cu nanoparticles synthesized by radiolytic process for catalytic CO preferential oxidation. Appl Catal A 406:43–50. doi:10.1016/j.apcata.2011.08.006

    Article  Google Scholar 

  • Kugai J, Moriya T, Seino S, Nakagawa T, Ohkubo Y, Nitani H, Daimon H, Yamamoto TA (2012) CeO2-supported Pt–Cu alloy nanoparticles synthesized by radiolytic process for highly selective CO oxidation. Int J Hydrog Energy 37:4787–4797. doi:10.1016/j.ijhydene.2011.12.070

    Article  Google Scholar 

  • Kugai J, Moriya T, Seino S, Nakagawa T, Ohkubo Y, Nitani H, Yamamoto TA (2013a) Effect of CeO2 support properties on structure of Pt–Cu nanoparticles synthesized by electron beam irradiation method for preferential CO oxidation. Chem Eng J 223:347–355. doi:10.1016/j.cej.2013.02.116

    Article  Google Scholar 

  • Kugai J, Moriya T, Seino S, Nakagawa T, Ohkubo Y, Nitani H, Ueno K, Yamamoto TA (2013b) Structure and catalytic performance of Pt–Cu bimetallic catalysts synthesized by a radiation-induced reduction method in the aqueous phase: influence of support material and sulfate ion in the precursor. J Phys Chem C 117:5742–5751. doi:10.1021/jp311600y

    Article  Google Scholar 

  • Mani P, Srivastava R, Strasser P (2008) Dealloyed Pt–Cu core–shell nanoparticle electrocatalysts for use in PEM fuel cell cathodes. J Phys Chem C 112:2770–2778. doi:10.1021/jp0776412

    Article  Google Scholar 

  • Markovic NM, Ross PN Jr (2002) Surface science studies of model fuel cell electrocatalysts. Surf Sci Rep 45:117–229. doi:10.1016/S0167-5729(01)00022-X

    Article  Google Scholar 

  • Moriya T, Kugai J, Seino S, Ohkubo Y, Nakagawa T, Nitani H, Yamamoto TA (2013) CuO role in γ-Fe2O3-supported Pt–Cu bimetallic nanoparticles synthesized by radiation-induced reduction as catalysts for preferential CO oxidation. J Nanopart Res 15(1–8):1451. doi:10.1007/s11051-013-1451-6

    Article  Google Scholar 

  • Oezaslan M, Strasser P (2011) Activity of dealloyed PtCo3 and PtCu3 nanoparticle electrocatalyst for oxygen reduction reaction in polymer electrolyte membrane fuel cell. J Power Sources 196:5240–5249. doi:10.1016/j.jpowsour.2010.11.016

    Article  Google Scholar 

  • Oezaslan M, Hasche F, Strasser P (2012a) PtCu3, PtCu and Pt3Cu alloy nanoparticle electrocatalysts for oxygen reduction reaction in alkaline and acidic media. J Electrochem Soc 159:B444–B454. doi:10.1149/2.106204jes

    Article  Google Scholar 

  • Oezaslan M, Heggen M, Strasser P (2012b) Size-dependent morphology of dealloyed bimetallic catalysts: linking the nano to the macro scale. J Am Chem Soc 134:514–524. doi:10.1021/ja2088162

    Article  Google Scholar 

  • Rao CS, Singh DM, Sekhar R, Rangarajan J (2011) Pt–Co electrocatalyst with varying atomic percentage of transition metal. Int J Hydrog Energy 36:14805–14814. doi:10.1016/j.ijhydene.2010.12.142

    Article  Google Scholar 

  • Senthilkumar ST, Senthilkumar B, Balaji S, Sanjeeviraja C, Kalai Selvan R (2011) Preparation of activated carbon from sorghum pith and its structural and electrochemical properties. Mater Res Bull 46:413–419. doi:10.1016/j.materresbull.2010.12.002

    Article  Google Scholar 

  • Stamenkovic V, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM, Rossmeisl J, Greeley J, Norskov JK (2006) Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew Chem Int Edit 45:2897–2901. doi:10.1002/anie.200504386

    Article  Google Scholar 

  • Strasser P, Koh S, Anniyev T, Greeley J, More K, Yu C, Liu Z, Kaya S, Nordlund D, Ogasawara H, Toney MF, Nilsson A (2010) Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat Chem 2:454–460. doi:10.1038/nchem.623

    Article  Google Scholar 

  • Yamamoto TA, Nakagawa T, Seino S, Nitani H (2010) Bimetallic nanoparticles of PtM (M = Au, Cu, Ni) supported on iron oxide: radiolytic synthesis and CO oxidation catalysis. Appl Catal A 387:195–202. doi:10.1016/j.apcata.2010.08.020

    Article  Google Scholar 

  • Yamamoto TA, Kageyama S, Seino S, Nitani H, Nakagawa T, Horioka R, Honda Y, Daimon H (2011) Methanol oxidation catalysis and substructure of PtRu/C bimetallic nanoparticles synthesized by a radiolytic process. Appl Catal A 396:68–75. doi:10.1016/j.apcata.2011.01.037

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. K. Ueno (EBIS, Japan) for the provision of beam time for the electron accelerator. The authors would also like to thank Prof. Minoru Inaba and Ms. Miwako Toda at Doshisha University for the morphological analysis using field emission TEM. This work was supported in part by the Ministry of Education, Culture, Sports, Science and Technology of Japan (Grant-in-Aid No. 22241023) and Ministry of Economy, Trade and Industry (R&D Project for Regional Innovation No. 22U5009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junichiro Kugai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kugai, J., Seino, S., Nakagawa, T. et al. Effect of phosphorus and copper additions on the structure of Pt and Pt–Cu nanoparticles in a radiation-induced reduction method. J Nanopart Res 16, 2275 (2014). https://doi.org/10.1007/s11051-014-2275-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2275-8

Keywords

Navigation