Skip to main content
Log in

Mechanistic aspects of protein corona formation: insulin adsorption onto gold nanoparticle surfaces

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In biological fluids, an adsorption layer of proteins, a “protein corona” forms around nanoparticles (NPs) largely determining their biological identity. In many interactions with NPs proteins can undergo structural changes. Here, we study the adsorption of insulin onto gold NPs (mean hydrodynamic particle diameter 80 ± 18 nm), focusing on the structural consequences of the adsorption process for the protein. We use surface enhanced Raman scattering (SERS) spectroscopy to study changes in the protein’s secondary structure as well as the impact on integrity and conformations of disulfide bonds immediately on the NP surface. A detailed comparison to SERS spectra of cysteine and cystine provides first mechanistic insights into the causes for these conformational changes. Potential biological and toxicological implications of these findings are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbas K, Cydzik I, Del Torchio R, Farina M, Forti E, Gibson N, Holzwarth U, Simonelli F, Kreyling W (2010) Radiolabelling of TiO2 nanoparticles for radiotracer studies. J Nanopart Res 12:2435–2443

    Article  Google Scholar 

  • Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61(6):428–437

    Article  Google Scholar 

  • Ainavarapu SRK, Wiita AP, Huang HH, Fernandez JM (2007) A single-molecule assay to directly identify solvent-accessible disulfide bonds and probe their effect on protein folding. J Am Chem Soc 130(2):436–437

    Article  Google Scholar 

  • Aubin-Tam M-E, Hamad-Schifferli K (2005) Gold nanoparticle-cytochrome c complexes: the effect of nanoparticle ligand charge on protein structure. Langmuir 21:12080–12084

    Article  Google Scholar 

  • Aubin-Tam ME, Hamad-Schifferli K (2008) Structure and function of nanoparticle–protein conjugates. Biomed Mater 3:1–17

    Article  Google Scholar 

  • Baron MH, Revault M, Servagent-Noinville S, Abadie J, Qui-Quampoix HJ (1999) Chymotrypsin adsorption on montmorillonite: enzymatic activity and kinetic FTIR structural analysis. J Colloid Interface Sci 214:319–332

    Article  Google Scholar 

  • Boronat M, Corma A (2010) Oxygen activation on gold nanoparticles: separating the influence of particle size, particle shape and support interaction. Dalton Transact 39(36):8538–8546

    Article  Google Scholar 

  • Bos MA, Shervani Z, Anusiem ACI, Giesbers M, Norde W, Kleijn JM (1994) Influence of the electric potential of the interface on the adsorption of proteins. Colloids Surf B 3(1–2):91–100

    Article  Google Scholar 

  • Brandes N, Welzel PB, Werner C, Kroh LW (2006) Adsorption-induced conformational changes of proteins onto ceramic particles: differential scanning calorimetry and FTIR analysis. J Colloid Interface Sci 299:56–69

    Article  Google Scholar 

  • Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA 104(7):2050–2055

    Article  Google Scholar 

  • Chanana M, Correa-Duarte MA, Liz-Marzán LM (2011) Insulin-coated gold nanoparticles: a plasmonic device for studying metal–protein interactions. Small 7(18):2650–2660

    Article  Google Scholar 

  • Chumanov GD, Efremov RG, Nabiev IR (1990) Surface-enhanced Raman spectroscopy of biomolecules. Part I. -water-soluble proteins, dipeptides and amino acids. J Raman Spectrosc 21(1):43–48

    Article  Google Scholar 

  • Colvin VL, Kulinowski KM (2007) Nanoparticles as catalysts for protein fibrillation. Proc Natl Acad Sci USA 104(21):8679–8680

    Article  Google Scholar 

  • Cotton TM, Uphaus RA, Mobius D (1986) Distance dependence of surface-enhanced resonance Raman enhancement in Langmuir-Blodgett dye multilayers. J Phys Chem 90(23):6071–6073

    Article  Google Scholar 

  • Cotton TM, Kim J-H, Chumanov GD (1991) Application of surface-enhanced Raman spectroscopy to biological systems. J Raman Spectrosc 22:729–742

    Article  Google Scholar 

  • Creighton TE (1985) The problem of how and why proteins adopt folded conformations. J Phys Chem 89(12):2452–2459

    Article  Google Scholar 

  • Devlin GL, Knowles TPJ, Squires A, McCammon MG, Gras SL, Nilsson MR, Robinson CV, Dobson CM, MacPhee CE (2006) The component polypeptide chains of bovine insulin nucleate or inhibit aggregation of the parent protein in a conformation-dependent manner. J Mol Biol 360(2):497–509

    Article  Google Scholar 

  • Dong J, Wan Z, Popov M, Carey PR, Weiss MA (2003) Insulin assembly damps conformational fluctuations: Raman analysis of amide I linewidths in native states and fibrils. J Mol Biol 330(2):431–442

    Article  Google Scholar 

  • Fass D (2012) Disulfide bonding in protein biophysics. Annu Rev Biophys 41(1):63–79

    Article  Google Scholar 

  • Fillafer C, Friedl DS, Ilyes AK, Wirth M, Gabor F (2009) Bionanoprobes to study particle-cell interactions. J Nanosci Nanotechnol 9:3239–3245

    Article  Google Scholar 

  • Franceschetti A, Pennycook SJ, Pantelides ST (2003) Oxygen chemisorption on Au nanoparticles. Chem Phys Lett 374:471–475

    Article  Google Scholar 

  • Frost R, Coué G, Engbersen JFJ, Zäch M, Kasemo B, Svedhem S (2011) Bioreducible insulin-loaded nanoparticles and their interaction with model lipid membranes. J Colloid Interf Sci 362(2):575–583

    Article  Google Scholar 

  • Gagner JE, Lopez MD, Dordick JS, Siegel RW (2011) Effect of gold nanoparticle morphology on adsorbed protein structure and function. Biomaterials 32:7241–7252

    Article  Google Scholar 

  • Garrell RL (1991) Probing biomolecule-surface interactions with surface-enhanced Raman spectroscopy. J Bioact Compat Polym 6(3):296–307

    Article  Google Scholar 

  • Garrido C, Aliaga AE, Gomez-Jeria JS, Clavijo RE, Campos-Vallette MM, Sanchez-Cortes S (2010) Adsorption of oligopeptides on silver nanoparticles: surface-enhanced Raman scattering and theoretical studies. J Raman Spectrosc 41:1149–1155

    Article  Google Scholar 

  • Gebauer JS, Treuel L (2011) Influence of individual ionic components on the agglomeration kinetics of silver nanoparticles. J Colloid Interface Sci 354(2):546–554

    Article  Google Scholar 

  • Gebauer JS, Malissek M, Simon S, Knauer SK, Maskos M, Stauber RH, Peukert W, Treuel L (2012) Impact of the nanoparticle–protein corona on colloidal stability and protein structure. Langmuir 28(25):9673–9679

    Article  Google Scholar 

  • Geiser M, Rothen-Rutishauser B, Kapp N, Schürch S, Kreyling W, Schulz H, Semmler M, Im Hof V, Heyder J, Gehr P (2005) Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 113(11):1555–1560

    Article  Google Scholar 

  • Handy RD, von der Kammer F, Lead JR, Hassellöv M, Owen R, Crane M (2008) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17:287–314

    Article  Google Scholar 

  • Hofbauer F, Frank I (2010) Disulfide bond cleavage: a redox reaction without electron transfer. Chem Eur J 16(17):5097–5101

    Article  Google Scholar 

  • Jiang X, Jiang J, Jin Y, Wang E, Dong S (2005) Effect of colloidal gold size on the conformational changes of adsorbed cytochrome c: probing by circular dichroism, UV–Vis, and infrared spectroscopy. Biomacromolecules 6:46–53

    Article  Google Scholar 

  • Jiang X, Weise S, Hafner M, Röcker C, Zhang F, Parak WJ, Nienhaus GU (2010) Quantitative analysis of the protein corona on FePt nanoparticles formed by transferrin binding. J R Soc Interface 7(Suppl 1):S5–S13

    Article  Google Scholar 

  • Joshi HM, Bhumkar DR, Joshi K, Pokharkar V, Sastry M (2006) Gold nanoparticles as carriers for efficient transmucosal insulin delivery. Langmuir 22(1):300–305

    Article  Google Scholar 

  • Kennedy BJ, Spaeth S, Dickey M, Carron KT (1999) Determination of the distance dependence and experimental effects for modified SERS substrates based on self-assembled monolayers formed using alkanethiols. J Phys Chem B 103(18):3640–3646

    Article  Google Scholar 

  • Kerker M, Wang D-S, Chew H (1980) Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles. Appl Opt 19(19):3373–3388

    Article  Google Scholar 

  • Kitagawa T, Hirota S (2006) Raman Spectroscopy of Proteins. In: Handbook of vibrational spectroscopy. Wiley, New York. doi:10.1002/0470027320.s8202

  • Kleijn M, Norde W (1995) The adsorption of proteins from aqueous solution on solid surfaces. Heterogeneous Chem Rev 2(3):157–172

    Google Scholar 

  • Klein J (2007) Probing the interactions of proteins and nanoparticles. Proc Natl Acad Sci USA 104(7):2029–2030

    Article  Google Scholar 

  • Kovacs GJ, Loutfy RO, Vincett PS, Jennings C, Aroca R (1986) Distance dependence of SERS enhancement factor from Langmuir-Blodgett monolayers on metal island films: evidence for the electromagnetic mechanism. Langmuir 2(6):689–694

    Article  Google Scholar 

  • Kreyling WG, Semmler M, Möller W (2004) Dosimetry and toxicology of ultrafine particles. J Aerosol Med 17(2):140–152

    Article  Google Scholar 

  • Krimm S, Bandekar J (1986) Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv Protein Chem 38:181–364

    Article  Google Scholar 

  • Laera S, Ceccone G, Rossi F, Gilliland D, Hussain R, Siligardi G, Calzolai L (2011) Measuring protein structure and stability of protein-nanoparticle systems with synchrotron radiation circular dichroism. Nano Lett 11:4480–4484

    Article  Google Scholar 

  • Le Ru E, Etchegoin P (2009) Principles of surface-enhanced raman spectroscopy and related plasmonic effects, vol 1. Elsevier Science, Amsterdam

    Google Scholar 

  • Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86(17):3391–3395

    Article  Google Scholar 

  • Linse S, Cabaleiro-Lago C, Xue W-F, Lynch I, Lindman S, Thulin E, Radford SE, Dawson KA (2007) Nucleation of protein fibrillation by nanoparticles. Proc Natl Acad Sci USA 104(21):8691–8696

    Article  Google Scholar 

  • Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 105(38):14265–14270

    Article  Google Scholar 

  • Lynch I, Dawson KA, Linse S (2006) Detecting cryptic epitopes created by nanoparticles. Science STKE 2006 (327):14

  • Maffre P, Nienhaus K, Amin F, Parak WJ, Nienhaus GU (2011) Characterization of protein adsorption onto FePt nanoparticles using dual-focus fluorescence correlation spectroscopy. Beilstein J Nanotechnol 2:374–383

    Article  Google Scholar 

  • Medintz IL, Konnert JH, Clapp AR, Stanish I, Twing ME, Mattoussi H, Mauro JM, Deschamps JR (2004) Proc Natl Acad Sci USA 101:9612–9617

    Article  Google Scholar 

  • Mills G, Gordon MS, Metiu H (2002) The adsorption of molecular oxygen on neutral and negative Aun clusters (N = 2–5). Chem Phys Lett 359:493–499

    Article  Google Scholar 

  • Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8(7):543–557

    Article  Google Scholar 

  • Nerma A, Rotello VM (2005) Surface recognition of biomacromolecules using nanoparticle receptors. Chem Commun:303-312

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839

    Article  Google Scholar 

  • Ortiz C, Zhang D, Xie Y, Davisson VJ, Ben-Amotz D (2004) Identification of insulin variants using Raman spectroscopy. Anal Biochem 332(2):245–252

    Article  Google Scholar 

  • Otto A, Billmann J, Eickmans J, Ertürk U, Pettenkofer C (1984) The “adatom model” of surface enhanced Raman scattering (SERS): the present status. Surf Sci 138(2–3):319–338

    Article  Google Scholar 

  • Otto A, Mrozek I, Grabhorn H, Akemann W (1992) Surface-enhanced Raman scattering. J Phys: Condens Matter 4(5):1143

    Google Scholar 

  • Ozhogina OA, Bominaar EL (2009) Characterization of the kringle fold and identification of a ubiquitous new class of disulfide rotamers. J Struct Biol 168(2):223–233

    Article  Google Scholar 

  • Pelton JT, McLean LR (2000) Spectroscopic methods for analysis of protein secondary structure. Anal Biochem 277(2):167–176

    Article  Google Scholar 

  • Peng AG, Hidajat K, Uddin MS (2004) Adsorption and desorption of lysozyme on nano-sized magnetic particles and its conformational changes. Colloids Surf B 35(3–4):169–174

    Article  Google Scholar 

  • Pînzaru SC, Andronie LM, Domsa I, Cozar O, Astilean S (2008) Bridging biomolecules with nanoparticles: surface-enhanced Raman scattering from colon carcinoma and normal tissue. J Raman Spectrosc 39(3):331–334

    Article  Google Scholar 

  • Reipa V, Gaigalas A, Abramowitz S (1993) Conformational alterations of bovine insulin adsorbed on a silver electrode. J Electroanal Chem 348(1–2):413–428

    Article  Google Scholar 

  • Roach P, Farrar D, Perry CC (2006) Surface tailoring for controlled protein adsorption: effect of topography at the nanometer scale and chemistry. J Am Chem Soc 128(12):3939–3945

    Article  Google Scholar 

  • Röcker C, Pötzl M, Zhang F, Parak WJ, Nienhaus GU (2009) A quantitative fluoresence study of protein monolayer formation on colloidal nanoparticles. Nat Nanotechnol 4(9):577–580

    Article  Google Scholar 

  • Rothen-Rutishauser B, Kiama S, Gehr P (2005) A three-dimensional cellular model of the human respiratory tract to study the interaction with particles. Am J Respir Cell Mol Biol 32(4):281–289

    Article  Google Scholar 

  • Salisbury BE, Wallace WT, Whetten RL (2000) Low-temperature activation of molecular oxygen by gold clusters: a stoichiometric process correlated to electron affinity. Chem Phys 262:131–141

    Article  Google Scholar 

  • Sane SU, Cramer SM, Przybycien TM (1999) A holistic approach to protein secondary structure characterization using amide I band raman spectroscopy. Anal Biochem 269(2):255–272

    Article  Google Scholar 

  • Schlücker S (2009) SERS microscopy: nanoparticle probes and biomedical applications. Chem Phys Chem 10(9–10):1344–1354

    Article  Google Scholar 

  • Schlücker S (2010) Surface enhanced Raman spectroscopy - analytical, biophysical and life science applications. Wiley, KGaA, Weinheim

    Book  Google Scholar 

  • Schlücker S, Liang C, Strehle KR, Digiovanna JJ, Kraemer KH, Levin IW (2006) Conformational differences in protein disulfide linkages between normal hair and hair from subjects with trichothiodystrophy: a quantitative analysis by Raman microspectroscopy. Biopolymers 82(6):615–622

    Article  Google Scholar 

  • Schulte JP, Grass S, Treuel L (2012) Adsorption of dicarboxylic acids onto nano-structured silver surfaces—surface-enhanced Raman scattering studies of pH-dependent adsorption geometries. J Raman Spectrosc 44:247–254

    Article  Google Scholar 

  • Seballos L, Olson TY, Zhang JZ (2006) Effects of chromophore orientation and molecule conformation on surface-enhanced Raman scattering studied with alkanoic acids and colloidal silver nanoparticles. J Chem Phys 125(23):234706

    Article  Google Scholar 

  • Sengupta PK, Krimm S (1985) Raman and normal mode studies of the polypeptide chain conformations in crystalline magnesium and calcium poly(l-glutamate)s. Spectrochim Acta, A 41(1–2):205–207

    Article  Google Scholar 

  • Sharma B, Frontiera RR, Henry A-I, Ringe E, Van Duyne RP (2012) SERS: materials, applications, and the future. Mater Today 15(1–2):16–25

    Article  Google Scholar 

  • Shemetov AA, Nabiev I, Sukhanova A (2012) Molecular interaction of proteins and peptides with nanoparticles. ACS Nano 6(6):4585–4602

    Article  Google Scholar 

  • Smith GD, Pangborn WA, Blessing RH (2005) The structure of T-6 bovine insulin. Acta Crystallogr Sect D-Biol Crystallogr 61:1476–1482

    Article  Google Scholar 

  • Socrates G (2001) Infrared and Raman characteristic group frequencies: tables and charts. Wiley, London

    Google Scholar 

  • Srinivasan N, Sowdhamini R, Ramakrishnan C, Balaram P (1990) Conformations of disulfide bridges in proteins. Int J Peptide Protein Res 36(2):147–155

    Article  Google Scholar 

  • Stiles PL, Dieringer JA, Shah NC, van Duyne RP (2008) Surface-enhanced Raman spectroscopy. Annu Rev Anal Chem 1:601–626

    Article  Google Scholar 

  • Suh JS, Moskovits M (1986) Surface-enhanced Raman spectroscopy of amino acids and nucleotide bases adsorbed on silver. J Am Chem Soc 108(16):4711–4718

    Article  Google Scholar 

  • Sun Y, Mayers BT, Xia Y (2002) Template-engaged replacement reaction: a one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano Lett 2(5):481–485

    Article  Google Scholar 

  • Tenzer S, Docter D, Rosfa S, Wlodarski A, Kuharev J, Rekik A, Knauer SK, Bantz C, Nawroth T, Bier C, Sirirattanapan J, Mann W, Treuel L, Zellner R, Maskos M, Schild H, Stauber RH (2011) Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano 5(9):7155–7167

    Article  Google Scholar 

  • Treuel L, Malissek M (2012) Interaction of nanoparticles with proteins- determination of equilibrium constants. In: Weissig V (ed) Cellular and Sub-cellular Nanotechnology—Methods and Protocols. Springer Verlag, New York (in press)

  • Treuel L, Nienhaus GU (2012) Toward a molecular understanding of nanoparticle–protein interactions. Biophys Rev 4(2):137–147

    Article  Google Scholar 

  • Treuel L, Malissek M, Gebauer JS, Zellner R (2010) The influence of surface composition of nanoparticles on their interactions with serum albumin. Chem Phys Chem 11(14):3093–3099

    Article  Google Scholar 

  • Treuel L, Malissek M, Grass S, Diendorf J, Mahl D, Meyer-Zaika W, Epple M (2012) Quantifying the influence of polymer coatings on the serum albumin corona formation around silver and gold nanoparticles. J Nanopart Res 14(9):395–406

    Article  Google Scholar 

  • Treuel L, Jiang X, Nienhaus GU (2013) New views on cellular uptake and trafficking of manufactured nanoparticles. J R Soc Interface 10(82):1742–5662

    Article  Google Scholar 

  • van der Veen M, Stuart MC, Norde W (2007) Spreading of proteins and its effect on adsorption and desorption kinetics. Colloids Surf B 54(2):136–142

    Article  Google Scholar 

  • Wallace WT, Leavitt AJ, Whetten RL (2003) Comment on: the adsorption of molecular oxygen on neutral and negative Aun clusters (N = 2–5). Chem Phys Lett 368:774–777

    Article  Google Scholar 

  • Watari F, Takashi N, Yokoyama A, Uo M, Akasaka M, Sato Y, Abe S, Totsuka Y, Tohji K (2009) Material nanosizing effect on living organism: non-specific, biointeractive, physical size effects. J R Soc Interface 6:371–388

    Article  Google Scholar 

  • Wei F, Zhang D, Halas NJ, Hartgerink JD (2008) Aromatic amino acids providing characteristic motifs in the Raman and SERS spectroscopy of peptides. J Phys Chem B 112(30):9158–9164

    Article  Google Scholar 

  • Wiita AP, Ainavarapu SRK, Huang HH, Fernandez JM (2006) Force-dependent chemical kinetics of disulfide bond reduction observed with single-molecule techniques. Proc Natl Acad Sci USA 103(19):7222–7227

    Article  Google Scholar 

  • Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6(8):1794–1807

    Article  Google Scholar 

  • Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2(10):2121–2134

    Article  Google Scholar 

  • Yu N-T, Liu CS, O’Shea DC (1972) Laser Raman spectroscopy and the conformation of insulin and proinsulin. J Mol Biol 70(1):117–132

    Article  Google Scholar 

  • Zhang D, Neumann O, Wang H, Yuwono VM, Barhoumi A, Perham M, Hartgerink JD, Wittung-Stafshede P, Halas NJ (2009) Gold nanoparticles can induce the formation of protein-based aggregates at physiological pH. Nano Lett 9(2):666–671

    Article  Google Scholar 

  • Zhou HS, Aoki S, Honma I, Hirasawa M, Nagamune T, Komiyama H (1997) Conformational change of protein cytochrome b-562 adsorbed on colloidal gold particles; absorption band shift. Chem Commun 1997:605–606. doi:10.1039/A607451K

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support of this work by the “Deutsche Forschungsgemeinschaft (DFG)” within the priority programme “Bio-Nano-Responses” (SPP1313). The authors thank S. Schlücker and R. Zellner (both University of Duisburg-Essen) for valuable discussions. LT acknowledges support by a Young Scientists Grant of the UDE, by a research grant of the Centre for Water and Environmental Science (CWE) and by the Bruno-Werdelmann Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lennart Treuel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1,332 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grass, S., Treuel, L. Mechanistic aspects of protein corona formation: insulin adsorption onto gold nanoparticle surfaces. J Nanopart Res 16, 2254 (2014). https://doi.org/10.1007/s11051-014-2254-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2254-0

Keywords

Navigation