Skip to main content
Log in

Defect induced modifications in the optical, dielectric, and transport properties of hydrothermally prepared ZnS nanoparticles and nanorods

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Zinc sulfide nanoparticles (particles size range 10–20 nm) and nanorods (particles size range 20–35 nm) were prepared through a hydrothermal method. The influence of surface defects and lattice strain on the optical, dielectric, and electrical transport properties was investigated. The spectral shifts and modification in bandgap are explained based on effective mass approximation model. Photoluminescence and ESR studies clearly showed the presence of large density of surface defects in the samples. The Raman spectra were thoroughly studied using the Gaussian confinement model. Dielectric studies using impedance and electric modulus spectroscopy showed enhanced grain boundary conductivity. Both nanoparticles and nanorods were found to exhibit Cole–Cole type dielectric relaxation. The enhanced ac electrical conductivities observed in both the nanostructures were successfully explained using the correlated barrier hopping model. Parameters like hopping time, barrier width, and defect densities were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ahmad M, Rafiq MA, Hasan MM (2013) Transport characteristics and colossal dielectric response of cadmium sulfide nanoparticles. J Appl Phys 114:133702–133708

    Article  Google Scholar 

  • Arguello CA, Rousseau DL, Porto SPS (1968) First-order Raman effect in wurtzite-type crystals. Phys Rev 181:1351–1363

    Article  Google Scholar 

  • Balandin A, Wang KL, Kouklin N, Sandyopadhyay S (2000) Raman spectroscopy of electrochemically self-assembled CdS quantum dots. Appl Phys Lett 76:137–139

    Article  Google Scholar 

  • Bhattacharjee B, Hs C, Lu I (2006) Multicolor luminescence of undoped zinc sulfide nanocrystalline thin films at room temperature. Thin Solid Films 514:132–137

    Article  Google Scholar 

  • Biju V, Abdulkhadar M (2001) AC conductivity of nanostructured nickel oxide. J Mater Sci 36:5779–5787

    Article  Google Scholar 

  • Bonato C, Ding D, Gudat J, Thon S, Kim H, Petroff PM, Exter MPV, Bouwmeester D (2009) Tuning micropillar cavity birefringence by laser induced surface defects. Appl Phys Lett 95:251104

    Article  Google Scholar 

  • Brada Y (1989) Electrical conductivity of ZnS crystals: ZnS crystals as quasi-one-dimensional conductors. Phys Rev B 39:7645–7652

    Article  Google Scholar 

  • Brafman O, Mitra SS (1968) Raman effect in wurtzite- and zinc-blende-type ZnS single crystals. Phys Rev 171:931–934

    Article  Google Scholar 

  • Cassina V, Gerosa L, Podesta` A, Ferrari G, Sampietro M, Fiorentini F, Mazza T, Lenardi C, P P (2009) Nanoscale electrical properties of cluster-assembled palladium oxide thin films. Phys Rev B 79:115422–115429

    Article  Google Scholar 

  • Chandran A, Samuel SM, Koshy J, George KC (2011a) Correlated barrier hopping in CdS nanoparticles and nanowires. J Appl Phys 109:84314–84319

    Article  Google Scholar 

  • Chandran A, Samuel SM, Koshy J, George KC (2011b) Dielectric relaxation behavior of CdS nanoparticles and nanowires. J Mater Sci 46:4646–4653

    Article  Google Scholar 

  • Cheng YC, Jin CQ, Gao F, Wu XL, Zong W, Li SH, Chu PK (2009) Raman scattering study of zinc blende and wurtzite ZnS. J Appl Phys 106:123505–123509

    Article  Google Scholar 

  • Chiang YM, Lavik EB, Kosacki I, Tuller HL, Ying JY (1996) Defect and transport properties of nanocrystalline CeO2−x . Appl Phys Lett 69:185–187

    Article  Google Scholar 

  • Chihara H, Nakamura N, Hellwege KH, Hellwege AM (1987) Landolt-Börnstein: numerical data and functional relationships in science and technology, vol 22. Springer, Berlin

    Google Scholar 

  • Coe S, Woo W, Bawendi M, Bulovic V (2002) Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420:800–803

    Article  Google Scholar 

  • Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics. I alternating current characteristics. J Chem Phys 9:341–351

    Article  Google Scholar 

  • Denzler D, Olschewski M, Sattler K (1998) Luminescence studies of localized gap states in colloidal ZnS nanocrystals. J Appl Phys 84:2841–2845

    Article  Google Scholar 

  • Derlet PM, Petegem SV, Swygenhoven HV (2005) Calculation of X-ray spectra for nanocrystalline materials. Phys Rev B 71:24114–24121

    Article  Google Scholar 

  • Dutta A, Sinha TP (2007) Dielectric relaxation and electronic structure of Ca(Fe1/2Sb1/2)O3. Phys Rev B 76:155113–155119

    Article  Google Scholar 

  • Einevoll GH (1991) Confinement of excitons in quantum dots. Phys Rev B 45:3410–3417

    Article  Google Scholar 

  • Elliott SR (1977) A theory of ac conduction in chalcogenide glasses. Philos Mag 36:1291–1304

    Article  Google Scholar 

  • Fang X, Zhai T, Gautam UK, Li L, Wu L, Bando Y, Golberg D (2011) ZnS nanostructures: from synthesis to applications. Prog Mater Sci 56:175–287

    Article  Google Scholar 

  • George KC, Kurien S, Mathew J, Sebastian S, Potty SN (2006) Dielectric behavior and ac electrical conductivity of nanocrystalline nickel aluminate. Mater Chem Phys 98:470–476

    Article  Google Scholar 

  • Goswami N, Sen P (2007) Photoluminescent properties of ZnS nanoparticles prepared by electro-explosion of Zn wires. J Nanopart Res 9:513–517

    Article  Google Scholar 

  • Hudlikar M, Joglekar S, Dhaygude M, Kodam K (2012) Latex-mediated synthesis of ZnS nanoparticles: green synthesis approach. J Nanopart Res 14:865–870

    Article  Google Scholar 

  • Iza DC, Rojas DM, Jia Q, Swartzentruber B, Driscoll JLM (2012) Tuning of defects in ZnO nanorod arrays used in bulk heterojunction solar cells. Nanoscale Res Lett 7:655–662

    Article  Google Scholar 

  • Jacob J, Khadar MA (2010) Investigation of mixed spinel structure of nanostructured nickel ferrite. J Appl Phys 107:114310–114319

    Article  Google Scholar 

  • Junkermeier CE, Lewis JP (2009) Amorphous nature of small CdS nanoparticles: molecular dynamics simulations. Phys Rev B 79:125323–125330

    Article  Google Scholar 

  • Kao KC (2004) Dielectric phenomena in solids. Elsevier Academic Press, London

    Google Scholar 

  • Kasai PH, Otomo Y (1962) Electron paramagnetic resonance studies of the ZnS-A and -B centers. J Chem Phys 37:1263–1275

    Article  Google Scholar 

  • Khan N, Li J (2006) Effects of compressive strain on optical properties of InxGa1 − xN/GaN quantum wells. Appl Phys Lett 89:151916(1)–151916(3)

    Google Scholar 

  • Limaye MV, Gokhale S, Acharya SA, Kulkarni SK (2008) Template-free ZnS nanorod synthesis by microwave irradiation. Nanotechnology 19:415602

    Article  Google Scholar 

  • Lippens PE, Lannoo M (1989) Calculation of the band gap for small CdS and ZnS crystallites. Phys Rev B 39:10935–10942

    Article  Google Scholar 

  • Lunkenheimer P, Loidl A, Ottermannand CR, Bange K (1991) Correlated barrier hopping in NiO films. Phys Rev B 44:5927–5930

    Article  Google Scholar 

  • Prabhu RR, Khadar MA (2008) Study of optical phonon modes of CdS nanoparticles using Raman spectroscopy. Bull Mater Sci 31:511–515

    Article  Google Scholar 

  • Qin W, Szpunar JA (2005) Origin of lattice strain in nanocrystalline materials. Philos Mag Lett 85:649–656

    Article  Google Scholar 

  • Raymond O, Font R, Suárez-Almodover N, Portelles J, Siqueiros JM (2005) Frequency-temperature response of ferroelectromagnetic Pb(Fe1/2Nb1/2)O3 ceramics obtained by different precursors. Part II. Impedance spectroscopy characterization. J Appl Phys 97:84108–84115

    Article  Google Scholar 

  • Ritcher H, Wang ZP, Lay L (1981) The one phonon Raman spectrum in microcrystalline silicon. Solid State Commun 39:625–629

    Article  Google Scholar 

  • Savitha T, Selvasekarapandian S, Ramya CS, Bhuvaneswari MS, Angelo PC (2007) Electrical conduction and relaxation mechanism in Li2AlZr[PO4]3. J Mater Sci 42:5470–5475

    Article  Google Scholar 

  • Sayer M, Mansingh M, Webb JB, Noad J (1978) Long-range potential centres in disordered solids. J Phys C 11:315–329

    Article  Google Scholar 

  • Schroer P, Kruger P, Pollmann J (1993) First-principles calculation of the electronic structure of the wurtzite semiconductors ZnO and ZnS. Phys Rev B 47:6971–6980

    Article  Google Scholar 

  • Serrano J, Cantarero A, Cardona M, Garro N, Lauck R, Tallman RE, Ritter TM, Weinstein BA (2004) Raman scattering in β-ZnS. Phys Rev B 69:14301–14311

    Article  Google Scholar 

  • Shalish I, Temkin H, Narayanamurti V (2004) Size-dependent surface luminescence in ZnO nanowires. Phys Rev B 69:245401–245404

    Article  Google Scholar 

  • Shevarenkov DN, Shchurov AF (2006) Dielectric properties of polycrystalline ZnS. Semiconductors 40:33–35

    Article  Google Scholar 

  • Shimakawa K (1982) On the temperature dependence of AC conduction in chalcogenide glasses. Philos Mag B 46:123–135

    Article  Google Scholar 

  • Smith AM, Mohs AM, Nie S (2009) Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. Nat Nanotechnol 4:56–63

    Article  Google Scholar 

  • Sural M, Ghosh A (1998) Electrical conductivity and conductivity relaxation in ZrF4–BaF2–YF3–LiF glasses. J Phys 10:10577–10586

    Google Scholar 

  • Suresh S (2013) Synthesis, structural and dielectric properties of zinc sulfide nanoparticles. Int J Phys Sci 8:1121–1127

    Google Scholar 

  • Unlu H, Horing NJM (2013) Low dimensional semiconductor structures: characterization, modeling and applications. Springer, Berlin

    Book  Google Scholar 

  • Veena GE, Malini KA, Sakthi Kumar D, Yoshida Y, Al-Omari IA, Saravanan S, Anantharaman MR (2009) On the dielectric dispersion and absorption in nanosized manganese zinc mixed ferrites. J Phys Condens Matter 21:146006–146017

    Article  Google Scholar 

  • Vij DR, Singh N (1998) Luminescence and related properties of II–VI semiconductors. Nova Science Publishers Inc, New York

    Google Scholar 

  • Voon LCLY, Willatzen M (2009) The Kp method: electronic properties of semiconductors. Springer, Berlin

    Google Scholar 

  • Wang C, Ao Y, Wang P, Hou J, Qian J, Zhang S (2010) Controlled synthesis in large-scale of CdS mesospheres and photocatalytic activity. Mater Lett 64:439–441

    Article  Google Scholar 

  • Xiao Q, Xiao C, Ouyang L (2008) Strong enhancement of band-edge photoluminescence in CdS nanocrystals prepared by one-step aqueous synthesis method. J Lumin 128:1942–1947

    Article  Google Scholar 

  • Xu XJ, Feil GT, HuiYu W, WeiWang X, Chen L, Zhang LD (2006) Preparation and formation mechanism of ZnS semiconductor nanowires made by the electrochemical deposition method. Nanotechnology 17:426–429

    Article  Google Scholar 

  • Yang H, Shen C, Song N, Wang Y, Yang T, Gao H, Cheng H (2010a) Facile synthesis of hollow nano-spheres and hemispheres of cobalt by polyol reduction. Nanotechnology 21:375602–375606

    Article  Google Scholar 

  • Yang Y, Yu SF, Yan J, Zhang LD (2010b) Random lasing action from randomly assembled ZnS nanosheets. Nanoscale Res Lett 5:809–812

    Article  Google Scholar 

  • Zhao YH, Zhang K, Lu K (1997) Structure characteristics of nanocrystalline element selenium with different grain sizes. Phys Rev B 56:14322–14329

    Article  Google Scholar 

  • Zhu Z, Ouyang G, Yang G (2010) Bandgap shift in SnO2 nanostructures induced by lattice strain and coordination imperfection. J Appl Phys 108:83511–83514

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank STIC (Cochin), IUC-DAE consortium for scientific research (INDORE), and the central instrumentation facility (SB College) for the analyses carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. C. George.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandran, A., George, K.C. Defect induced modifications in the optical, dielectric, and transport properties of hydrothermally prepared ZnS nanoparticles and nanorods. J Nanopart Res 16, 2238 (2014). https://doi.org/10.1007/s11051-013-2238-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-2238-5

Keywords

Navigation