Skip to main content

Hydrogen-induced Ostwald ripening of cobalt nanoparticles on carbon nanotubes

Abstract

Nanoparticles on carbon nanotubes can be used as a high surface area catalyst or as a means to produce well-defined particles. In this study, cobalt nanoparticles were formed on xxsingle-walled carbon nanotubes during hydrogen exposure at an elevated temperature. The average particle size increased as a function of reaction time ranging from 1.5 to 40 nm, indicating hydrogen-induced Ostwald ripening which is remarkable for a nonhydrogen-absorbing material. Mass abundances and cobalt shells were observed which possibly contained hydrogen. The combination of large surface area, high atomic mobility, and hydrogen-induced Ostwald ripening resulted in a novel method to prepare various cobalt nanoparticle shapes and sizes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Aceto S, Chang CY, Vook RW (1992) Hillock growth on aluminum and aluminum alloy films. Thin Solid Films 219(80):86

    Google Scholar 

  • Barnard AS, Young NP, Kirkland AI, van Huis MA, Xu H (2009) Nanogold: a quantitative phase map. ACS Nano 3:1431–1436

    Article  Google Scholar 

  • Borjesson A, Bolton K (2011) Modeling of Ostwald ripening of metal clusters attached to carbon nanotubes. J Phys Chem C 115:24454–24462

    Article  Google Scholar 

  • Campbell CT (1997) Ultrathin metal films and particles on oxide surfaces: structural, electronic and chemisorptive properties Surf. Sci. Rep. 27:1–111

    Article  Google Scholar 

  • Carmo M, Paganin VA, Rosolen JM, Gonzalez ER (2005) Alternative supports for the preparation of catalysts for low-temperature fuel cells: the use of carbon nanotubes. J Power Sources 142:169–176

    Article  Google Scholar 

  • Cbaiken J, Casey M, Villarica M (1992) Laser chemistry of organometallics as a general synthetic route to metal clusters. J Phys Chem 96:3185

    Google Scholar 

  • Chen Y, Wei L, Wang B, Lim S, Ciuparu D, Zheng M, Chen J, Zoican C, Yang Y, Haller GL, Pfefferle LD (2007) Low-defect, purified, narrowly (n, m)-dispersed single-walled carbon nanotubes grown from cobalt-incorporated MCM-41. ACS Nano 1:327–336

    Article  Google Scholar 

  • Choi J-G (1995) Reduction of supported cobalt catalysts by hydrogen. Catal Lett 35:291–296

    Article  Google Scholar 

  • Condon JB, Schober T (1993) Hydrogen bubbles in metals. J Nucl Mater 2007:1–24

    Article  Google Scholar 

  • Conner WWC, Falconer JL (2005) Spillover in heterogeneous catalysis. Chem Rev 95:759–788

    Article  Google Scholar 

  • Day TM, Unwin PR, Wilson NR, Macpherson JV (2005) Electrochemical templating of metal nanoparticles and nanowires on single-walled carbon nanotube networks. J Am Chem Soc 127:10639–10647

    Article  Google Scholar 

  • Di Vece M, Grandjean D, Van Bael MJ, Romero CP, Wang X, Decoster S, Vantomme A, Lievens P (2008) Hydrogen-induced Ostwald ripening at room temperature in a Pd nanocluster film. Phys Rev Lett 100:236105

    Article  Google Scholar 

  • Di Vece M, Bals S, Verbeeck J, Lievens P, Van Tendeloo G (2009) Compositional changes of Pd–Au bimetallic nanoclusters upon hydrogenation. Phys Rev B 80:125420

    Article  Google Scholar 

  • Dresselhaus MS, Dresselhaus G, Hofmann M (2007) The big picture of Raman scattering in carbon nanotubes. Vib Spec 45:71–81

    Article  Google Scholar 

  • Fukai Y, Yokota S, Yanagawa J (2006) The phase diagram and superabundant vacancy formation in Co–H alloys. J Alloy Compd 407:16–24

    Article  Google Scholar 

  • Granqvist CG, Buhrman RA (1976) Ultrafine metal particles. J Appl Phys 47:2200–2222

    Article  Google Scholar 

  • Hull AW (1921) X-ray crystal analysis of thirteen common metals. Phys Rev 17:571–588

    Article  Google Scholar 

  • Iglesia E (1997) Design, synthesis, and use of cobalt-based Fischer–Tropsch synthesis catalysts. Appl Catal A 161:59–78

    Article  Google Scholar 

  • Jang E, Lim E-K, Choi J, Park J, Huh YJ, Suh JS, Huh YM, Haam S (2012) Br-Assisted Ostwald Ripening of Au nanoparticles under H2O2 Redox. Cryst Growth Des 12:37–39

    Article  Google Scholar 

  • Johnston RL (2002) Atomic and molecular clusters, 1st edn. Taylor & Francis, London

    Book  Google Scholar 

  • Jorio A, Fantini C, de Souza M, Saito R, Samsonidze GG, Dresselhaus G, Dresselhaus MS, Pimenta MA (2004) Raman on carbon nanotubes using a tunable laser and comparison with photoluminescence. In: Kuzmany H, Fink J, Mehring M, Roth S (eds) Electronic Properties of synthetic nanoparticle structures, American Institute of Physics conference proceeding, pp 157–162

  • Kitakami O, Sato H, Shimada Y, Sato F, Tanaka M (1997) Size effect on the crystal phase of cobalt fine particles. Phys Rev B 56:13849–13854

    Article  Google Scholar 

  • Knight WD, Clemenger K, de Heer WA, Saunders WA, Chou MY, Cohen ML (1984) Electronic shell structure and abundances of sodium clusters. Rev Lett 52:2141–2143

    Article  Google Scholar 

  • Lai MY, Wang YL (1998) Direct observation of two dimensional magic clusters. Phys Rev Lett 81:164–167

    Article  Google Scholar 

  • Lim S, Li N, Fang F, Pinault M, Zoican C, Wang C, Fadel T, Pfefferle LD, Haller GL (2008) High-yield single-walled carbon nanotubes synthesized on the small-pore (C10) Co-MCM-41 catalyst. J Phys Chem C 112:12442–12454

    Article  Google Scholar 

  • Lu Y, Li J, Han J, Ng HT, Binder C, Partridge C, Meyyappan M (2004) Room temperature methane detection using palladium loaded single-walled carbon nanotube sensors. Chem Phys Lett 391:344–348

    Article  Google Scholar 

  • Martin TP, Bergmann T, Gohlich H, Lange T (1990) Observation of electronic shells of atoms in large Na clusters. Chem Phys Lett 172:209–213

    Article  Google Scholar 

  • Maruyama S, Anderson LR, Smalley RE (1990) Direct injection supersonic cluster beam source for FT-ICR studies of clusters. Rev Sci Instrum 61:3686–3693

    Article  Google Scholar 

  • Milani P, de Heer WA (1990) Improved pulsed laser vaporization source for production of intense beams of neutral and ionized clusters. Rev Sci Instrum 61:1835–1838

    Article  Google Scholar 

  • Milcius DD, Pranevicius LL, Templier C (2005) Hydrogen storage in the bubbles formed by high-flux ion implantation in thin Al films. J Alloys Compd 398:203–207

    Article  Google Scholar 

  • Natl. Bur. Stand. (US) (1960) Circulation 539:9–28

    Google Scholar 

  • Nayak SK, Jena P, Stepanyuk VS, Hergert W, Wildberger K (1997) Magic numbers in supported metal clusters. Phys Rev B 56:6952–6957

    Article  Google Scholar 

  • Ostwald W (1900) On the assumed isomerism of red and yellow mercury oxide and the surface-tension of solid bodies. Z Phys Chem (Leipzig) 34:495–503

    Google Scholar 

  • Palasantzas G, Koch SA, Vystavel T, De Hosson JTM (2005) Nano-sized cobalt cluster films: structure and functionality. Adv Eng Mater 7:21–25

    Google Scholar 

  • Pan GZ, Tu KN, Prussin A (1996) Size-distribution and annealing behavior of end-of-range dislocation loops in silicon-implanted silicon. J Appl Phys 81:1

    Google Scholar 

  • Patterson AL (1939) The Scherrer formula for x-ray particle size determination. Phys Rev Lett 56:978–982

    Google Scholar 

  • Peng X, Chen J, Misewich JA, Wong SS (2009) Carbon nanotube-nanocrystal heterostructures. Chem Soc Rev 38:1076–1098

    Article  Google Scholar 

  • Sato H, Kitakami O, Sakurai T, Shimada Y, Otani Y, Fukamichi K (1997) Structure and magnetism of hcp-Co fine particles. J Appl Phys 81:1858–1862

    Article  Google Scholar 

  • Schober T, Bechthold PS (1994) Hydrogen blisters on beta-NbD after laser pulse heating. J Appl Phys 76:2093–2096

    Google Scholar 

  • Smigelskas AD, Kirkendall EO (1947) Zinc diffusion in alpha-brass. Trans AIME 171:130–142

    Google Scholar 

  • Solliard C, Flueli M (1985) Surface stress and size effect on the lattice parameter in small particles of gold and platinum. Surf Sci 156:487–494

    Article  Google Scholar 

  • Tian N, Zhou ZY, Sun SG, Ding Y, Wang ZL (2007) Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316:732–735

    Article  Google Scholar 

  • Visintin A, Canullo JC, Tracia WE (1988) Changes in real surface area, crystallographic orientation and morphology of platinum-electrodes caused by periodic potential treatments-phenomenological approach Arvia. J Electroanal Chem 239:67

    Article  Google Scholar 

  • Voorhees PW (1985) The theory of Ostwald ripening. J Stat Phys 38:231

    Article  Google Scholar 

  • Winter BJ, Klots TD, Parks EK, Riley SJ (1991) Chemical-identification of icosahedral structure for cobalt and nickel clusters. Z Phys D 19:375–380

    Article  Google Scholar 

  • Yao JH, Yao Elder KR, Guo H, Grant M (1993) Theory and simulation of Ostwald ripening. Phys Rev B 47(2):14110

    Article  Google Scholar 

  • Yin Y, Rioux RM, Erdonmez CK, Hughes S, Somorjai GA, Alivisatos AP (2004) Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304:711–714

    Article  Google Scholar 

  • Yoo E, Gao L, Komatsu T, Yagai N, Arai K, Yamazaki T, Matsuishi, Matsumoto T, Nakamura J (2004) Atomic hydrogen storage in carbon nanotubes promoted by metal catalystsJ. Phys Chem B 108:18903–18907

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the National Science Foundation (NSF CBET-0828771) and AFOSR MURI (FA9550-08-1-0309) for financial support. Electron microscopy on the T20 was accomplished at the Electron Microscopy Center for Materials Research at Argonne National Laboratory, the U.S. Department of Energy Office of Science Laboratory operated under Contract No. DE-AC02-06CH11357 by UChicago Argonne, LLC. TEM assistance by R. E. Cook is appreciated by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Di Vece.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Di Vece, M., Zoican-Loebick, C. & Pfefferle, L.D. Hydrogen-induced Ostwald ripening of cobalt nanoparticles on carbon nanotubes. J Nanopart Res 16, 2234 (2014). https://doi.org/10.1007/s11051-013-2234-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-2234-9

Keywords

  • Cobalt
  • Nanoparticle
  • Hydrogen
  • Carbon nanotube, magic number
  • Ostwald ripening
  • Nanocomposites