Skip to main content
Log in

Bamboo-type carbon nanotube solids derived from low-cost epoxy resins and their potential application for air filtration

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) are formed in bulk solids from the thermal decomposition of catalytic amounts of Fe2(CO)9 or Co2(CO)8 in the presence of an excess amount of a novolac epoxy carbon precursor during the conversion to a shaped thermoset composition and pyrolysis to 1,000 °C. The as-pyrolyzed carbonaceous solid is composed of either Fe or Co nanoparticles embedded in the nanostructured carbon, which contains bamboo-type carbon nanotubes, MWNTs, and some amorphous carbon. The Fe and Co nanoparticles, formed in situ from thermal decomposition of the corresponding salts, are responsible for the formation of the CNTs. The amorphous carbon is removed by selective combustion leaving a high surface area, porous composition. The pore network facilitates the transport of gaseous molecules such as ammonia to the adsorptive sites at the CNT surface and at entrained Fe or Co nanoparticle sites. During the combustion, the Fe and Co nanoparticles are oxidized to the corresponding nanostructured oxides, which are more receptive to ammonia absorption relative to the reduced metal. The ability to produce nanostructured solid compositions containing CNTs in any shape or form from inexpensive, commercially available carbon precursors is facilitating the development for application such as energy, gas sorption, chemical sensor, membrane, and nanodevices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Blyholder G, Richardson EA (1962) Infrared and volumetric data on adsorption of ammonia, water, and other gases on activated iron (III) oxide. J Phys Chem 66:2597–2602. doi:10.1021/j100818a062

    Article  Google Scholar 

  • Glover TG, Peterson GW, Schindler BJ, Britt D, Yaghi O (2011) MOF-74 building unit has a direct impact on toxic gas adsorption. Chem Eng Sci 66:163–170. doi:10.1016/j.ces.2010.10.002

    Article  Google Scholar 

  • Hafner JH, Bronikowski MJ, Azamian BR, Nikolaev P, Rinzler AG, Colbert DT, Smith KA, Smalley RE (1998) Catalytic growth of single-wall carbon nanotubes from metal particles. Chem Phys Lett 296:195–202. doi:10.1016/S0009-2614(98)01024-0

    Article  Google Scholar 

  • Hong SE, Kim DK, Jo SM, Kim DY, Chin BD, Lee DW (2007) Graphite nanofibers prepared from catalytic graphitization of electrospun poly(vinylidene fluoride) nanofibers and their hydrogen storage capacity. Catal Today 120:413–419. doi:10.1016/j.cattod.2006.09.013

    Article  Google Scholar 

  • Jang JW, Lee CE, Oh CI, Lee CJ (2005) J hydrogen storage capacity of different carbon nanostructures in ambient conditions. Appl Phys 98:074316. doi:10.1063/1.2076433

    Article  Google Scholar 

  • Jang IY, Ogata H, Park KC, Lee SH, Park JS, Jung YC, Kim HJ, Kim HA, Endo M (2010) Exposed edge planes of cup-stacked carbon nanotubes for an electrochemical capacitor. J Phys Chem Lett 1:2099–2103. doi:10.1021/jz1006498

    Article  Google Scholar 

  • Katar SL, De Jesus J, Weiner BR, Morell G (2008) Films of bamboo-like carbon nanotubes as electrode material for rechargeable lithium batteries. J Electrochem Soc 155:A125–A128. doi:10.1149/1.2815675

    Article  Google Scholar 

  • Keller TM, Qadri SB (2004) Ferrocenylethynylbenzenes as precursors to in situ synthesis of carbon nanotube and Fe nanoparticle compositions. Chem Mater 16:1091–1097. doi:10.1021/cm030624e

    Article  Google Scholar 

  • Keller TM, Qadri SB, Little CA (2004) Carbon nanotube formation in situ during carbonization in shaped bulk solid cobalt nanoparticle compositions. J Mater Chem 14:3063–3070. doi:10.1039/b402936d

    Article  Google Scholar 

  • Keller TM, Laskoski M, Qadri SB (2007) Ferrocene catalyzed carbon nanotube formation in carbonaceous solid. Phys Chem C 111:2514–2519. doi:10.1021/jp0665527

    Article  Google Scholar 

  • Keller TM, Laskoski M, Osofsky M, Qadri SB (2008) Carbon nanotube formation catalyzed by Ni nanoparticles in carbonaceous solid. Phys Stat Sol A 205:1585–1591. doi:10.1002/pssa.200723370

    Article  Google Scholar 

  • Kinoshita K (1988) Carbon: electrochemical and physicochemical properties. Wiley, New York, p 1974

    Google Scholar 

  • Kitiyanan B, Alvarez WE, Harwell JH, Resasco DE (2000) Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co-Mo catalysts. Chem Phys Lett 317:497–503. doi:10.1016/S0009-2614(99)01379-2

    Article  Google Scholar 

  • Klaassen JJ, Jacobson DB (1989) Facile oxygen-exchange by cobalt cluster oxide ions with water-O-18 in the gas-phase. Inorg Chem 28:2022–2024. doi:10.1021/ic00310a003

    Article  Google Scholar 

  • Kombarakkaran J, Clewett CFM, Pietraß T (2007) Ammonia adsorption on multi-walled carbon nanotubes. Chem Phys Lett 441:282–285. doi:10.1016/j.cplett.2007.05.015

    Article  Google Scholar 

  • Krivoruchko OP, Maksimova NI, Zaikovskii VI, Salanov AN (2000) Study of multiwalled graphite nanotubes and filaments formation from carbonized products of polyvinyl alcohol via catalytic graphitization at 600-800 degrees C in nitrogen atmosphere. Carbon 38:1075–1082. doi:10.1016/S0008-6223(99)00225-0

    Article  Google Scholar 

  • Laskoski M, Qadri SB, Keller TM (2007) Solid-phase synthesis of multi-walled carbon nanotubes from butadiynyl-ferrocene-containing compounds. Carbon 45:443–448. doi:10.1016/j.carbon.2006.08.014

    Article  Google Scholar 

  • Long JW, Laskoski M, Keller TM, Pettigrew KA, Qadri SB, Zimmerman TM, Peterson GW (2010) Selective-combustion purification of bulk carbonaceous solids to produce graphitic nanostructures. Carbon 48:501–508. doi:10.1016/j.carbon.2009.09.068

    Article  Google Scholar 

  • Long JW, Laskoski M, Peterson GW, Keller TM, Pettigrew KA, Schindler BJ (2011) Metal-catalyzed graphitic nanostructures as sorbents for vapor-phase ammonia. J Mater Chem 21:3477–3484. doi:10.1039/c0jm03167d

    Article  Google Scholar 

  • Nyamori VO, Mhlanga SD, Coville NJ (2008) The use of organometallic transition metal complexes in the synthesis of shaped carbon nanomaterials. J Organomet Chem 693:2205–2222. doi:10.1016/j.jorganchem.2008.04.003

    Article  Google Scholar 

  • Osswald S, Havel M, Gogotsi Y (2007) Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy. J Raman Spectrosc 38:728–736. doi:10.1002/jrs.1686

    Article  Google Scholar 

  • Peigney A, Laurent C, Dobigeon F, Rousset A (1997) Carbon nanotubes grown in situ by a novel catalytic method. J Mater Res 12:613–615. doi:10.1557/JMR.1997.0092

    Article  Google Scholar 

  • Petit C, Bandosz TJ (2007) Role of aluminum oxycations in retention of ammonia on modified activated carbons. J Phys Chem C 111:16445–16452. doi:10.1021/jp074118e

    Article  Google Scholar 

  • Petit C, Karwacki C, Peterson G, Bandosz TJ (2007) Interactions of ammonia with the surface of microporous carbon impregnated with transition metal chlorides. J Phys Chem C 111:12705–12714. doi:10.1021/jp072066n

    Article  Google Scholar 

  • Rao CNR, Govindaraj A (2002) Carbon nanotubes from organometallic precursors. Acc Chem Res 35:998–1007. doi:10.1021/ar0101584

    Article  Google Scholar 

  • Saito R, Grünels A, Samsonidze GG, Brar VW, Dresselhaus G, Dresselhaus MS, Jorio A, Cançado LG, Fantini C, Pimenta MA, Souza AG (2003) Double resonance Raman spectroscopy of single-wall carbon nanotubes. New J Phys 5:157. doi:10.1088/1367-2630/5/1/157

    Article  Google Scholar 

  • Subramanian V, Zhu H, Wei BQ (2006) High rate reversibility anode materials of lithium batteries from vapor-grown carbon nanofibers. Phys Chem B 110:7178–7183. doi:10.1021/jp057080j

    Article  Google Scholar 

  • Wang Y, Alsmeyer DC, McCreery RL (1990) Raman-spectroscopy of carbon materials-structural basis of observed spectra. Chem Mater 2:557–563. doi:10.1021/cm00011a018

    Article  Google Scholar 

  • Wang Q, Li H, Chen L, Huang X, Zhong D, Wang E (2003) Investigation of lithium storage in bamboo-like CNTs By HRTEM. J Electrochem Soc 150:A1281–A1286. doi:10.1149/1.1600463

    Article  Google Scholar 

  • Wang YY, Tang GY, Koeck FAM, de Brown B, Garguilo JM, Nemanich RJ (2004) Experimental studies of the formation process and morphologies of carbon nanotubes with bamboo mode structures. Diamond Related Mater 13:1286–1291. doi:10.1016/j.diamond.2004.01.009

    Google Scholar 

Download references

Acknowledgments

Financial support for this research was provided by the U.S. Office of Naval Research and the Defense Threat Reduction Agency.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keller, T.M., Laskoski, M., Long, J.W. et al. Bamboo-type carbon nanotube solids derived from low-cost epoxy resins and their potential application for air filtration. J Nanopart Res 16, 2165 (2014). https://doi.org/10.1007/s11051-013-2165-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-2165-5

Keywords

Navigation