Characterization of cobalt phosphide nanoparticles derived from molecular clusters in mesoporous silica

  • Paulin Buchwalter
  • Jacky Rosé
  • Bénédicte Lebeau
  • Ovidiu Ersen
  • Maria Girleanu
  • Pierre RabuEmail author
  • Pierre BraunsteinEmail author
  • Jean-Louis PaillaudEmail author
Research Paper


The synthesis of well dispersed cobalt phosphide nanoparticles (NPs) in SBA-15 mesoporous silica by wet impregnation of the molecular cluster [Co4(CO)10(μ-dppa)] (1) (dppa = HN(PPh2)2) is described. The thermal activation of the silica impregnated precursor under a H2/N2 (5/95 %) stream at different temperatures to form NPs was studied and it was found that the size of the latter is limited in the 5.5–6.5 nm range by the size of the pores. The obtained materials were characterized by various analytical methods. The porosity and the structure of the mesoporous silica supports were analyzed by N2 adsorption/desorption and small-angle X-ray diffraction. The nanoparticles were characterized by wide-angle X-ray diffraction, transmission electron microscopy in conventional and scanning modes, electron tomography, energy-dispersive X-ray spectroscopy, and magnetic measurements. Cobalt phosphide NPs of few nanometers were observed in the pores of SBA-15.


Nanoparticles Mesoporous silica Cobalt phosphide Electron microscopy Magnetism 



We are grateful to the Région Alsace (PhD grant to P. Buchwalter), the Centre National de la Recherche Scientifique and the Ministère de la Recherche for support. We also acknowledge support of the ci-FRC of Strasbourg. We wish to thank Dris Ihiawakrim, IPCMS Strasbourg, France, and Loïc Vidal, IS2M Mulhouse, France, for the transmission electron microscopy, and Laure Michelin, IS2M Mulhouse, France, for XRF analyses.

Supplementary material

11051_2013_2132_MOESM1_ESM.docx (2.3 mb)
Supplementary material 1 (DOCX 2,326 kb)


  1. Adams RD, Boswell EM, Captain B, Hungria AB, Midgley PA, Raja R, Thomas JM (2007) Bimetallic Ru–Sn nanoparticle catalysts for the solvent-free selective hydrogenation of 1,5,9-cyclododecatriene to cyclododecene. Angew Chem Int Ed 46(43):8182–8185. doi: 10.1002/anie.200702274 CrossRefGoogle Scholar
  2. Aronsson B, Lundström T, Rundqvist S (1965) Borides, silicides, and phosphides; a critical review of their preparation, properties and crystal chemistry. Methuen; Wiley, London; New YorkGoogle Scholar
  3. Bachert I, Braunstein P, Hasselbring R (1996) Alkoxysilyl-functionalized mixed-metal carbonyl clusters. New J Chem 20:993–995Google Scholar
  4. Bachert I, Bartusseck I, Braunstein P, Guillon E, Rosé J, Kickelbick G (1999a) Synthesis of Co2Pt, Co2Pd and MoPd2 mixed-metal clusters with the P–N–P assembling ligands (Ph2P)2NH (dppa) and (Ph2P)2NMe (dppaMe). Crystal structure of [Co2Pt(μ3-CO)(CO)6(μ-dppa)]. J Organomet Chem 580(2):257–264. doi: 10.1016/S0022-328X(98)01164-4 CrossRefGoogle Scholar
  5. Bachert I, Braunstein P, McCart MK, Fabrizi de Biani F, Laschi F, Zanello P, Kickelbick G, Schubert U (1999b) Synthesis, structure and electrochemical studies of the first mixed-metal clusters with the P–N–P assembling ligands (Ph2P)2NH (dppa), (Ph2P)2N(CH3) (dppam) and (Ph2P)2N(CH2)3Si(OEt)3 (dppaSi). J Organomet Chem 573(1–2):47–59. doi: 10.1016/S0022-328X(98)00636-6 CrossRefGoogle Scholar
  6. Bichat M-P, Pascal J-L, Gillot F, Favier F (2005) Electrochemical lithium insertion in Zn3P2 zinc phosphide. Chem Mater 17(26):6761–6771. doi: 10.1021/cm0513379 CrossRefGoogle Scholar
  7. Braunstein P, Kormann H-P, Meyer-Zaika W, Pugin R, Schmid G (2000) Strategies for the anchoring of metal complexes, clusters, and colloids inside nanoporous alumina membranes. Chemistry 6(24):4637–4646. doi: 10.1002/1521-3765(20001215)6:24<4637:aid-chem4637>;2-a CrossRefGoogle Scholar
  8. Brock SL, Senevirathne K (2008) Recent developments in synthetic approaches to transition metal phosphide nanoparticles for magnetic and catalytic applications. J Solid State Chem 181(7):1552–1559. doi: 10.1016/j.jssc.2008.03.012 CrossRefGoogle Scholar
  9. Brock SL, Perera SC, Stamm KL (2004) Chemical routes for production of transition-metal phosphides on the nanoscale: implications for advanced magnetic and catalytic materials. Chem-Eur J 10(14):3364–3371. doi: 10.1002/chem.200305775 CrossRefGoogle Scholar
  10. Broekhoff JCP, de Boer JH (1968) Studies on pore systems in catalysts: XIII. Pore distributions from the desorption branch of a nitrogen sorption isotherm in the case of cylindrical pores B. Applications. J Catal 10(4):377–390. doi: 10.1016/0021-9517(68)90153-X CrossRefGoogle Scholar
  11. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60(2):309–319. doi: 10.1021/ja01269a023 CrossRefGoogle Scholar
  12. Buchwalter P, Rosé J, Lebeau B, Rabu P, Braunstein P, Paillaud J-L (2013) Stoichiometric molecular single source precursors to cobalt phosphides. Inorg Chim Acta. doi: 10.1016/j.ica.2013.1009.1019 Google Scholar
  13. Carenco S, Portehault D, Boissière C, Mézailles N, Sanchez C (2013) Nanoscaled metal borides and phosphides: recent developments and perspectives. Chem Rev. doi: 10.1021/cr400020d Google Scholar
  14. Chaudret B (2005) Organometallic approach to nanoparticles synthesis and self-organization. C R Phys 6(1):117–131. doi: 10.1016/j.crhy.2004.11.008 CrossRefGoogle Scholar
  15. Chiang R-K, Chiang R-T (2006) Formation of hollow Ni2P nanoparticles based on the nanoscale kirkendall effect. Inorg Chem 46(2):369–371. doi: 10.1021/ic061846s CrossRefGoogle Scholar
  16. Chini P, Albano V, Martinengo S (1969) Synthesis and properties of tetradecacarbonylhexacobaltate tetraanion derivatives. J Organomet Chem 16(3):471–477. doi: 10.1016/S0022-328X(00)89772-7 CrossRefGoogle Scholar
  17. Clark P, Li W, Oyama ST (2001) Synthesis and activity of a new catalyst for hydroprocessing: tungsten phosphide. J Catal 200(1):140–147. doi: 10.1006/jcat.2001.3189 CrossRefGoogle Scholar
  18. Corma A (1997) From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem Rev 97(6):2373–2420. doi: 10.1021/cr960406n CrossRefGoogle Scholar
  19. Cui Y, Lieber CM (2001) Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291(5505):851–853. doi: 10.1126/science.291.5505.851 CrossRefGoogle Scholar
  20. Dutta P, Seehra MS, Thota S, Kumar J (2008) A comparative study of the magnetic properties of bulk and nanocrystalline Co3O4. J Phys 20:015218Google Scholar
  21. Evain C Programme U-FIT (1992) Institut des Matériaux de Nantes, FranceGoogle Scholar
  22. Forsyth JB, Wilkinson C, Paster S, Wanklyn BM (1988) Antiferromagnetism in cobalt orthophosphate. J Phys C 21:2005–2011. doi: 10.1088/0022-3719/21/10/018 CrossRefGoogle Scholar
  23. Forsyth JB, Wilkinson C, Paster S, Wanklyn BM (1989) The magnetic structure of cobalt diphosphate Co2P2O7. J Phys 1(1):169Google Scholar
  24. Galarneau A, Desplantier D, Dutartre R, Di Renzo F (1999) Micelle-templated silicates as a test bed for methods of mesopore size evaluation. Microporous Mesoporous Mater 27(2–3):297–308. doi: 10.1016/S1387-1811(98)00263-7 CrossRefGoogle Scholar
  25. Galarneau A, Cambon H, Di Renzo F, Fajula F (2001) True microporosity and surface area of mesoporous SBA-15 silicas as a function of synthesis temperature. Langmuir 17(26):8328–8335. doi: 10.1021/la0105477 CrossRefGoogle Scholar
  26. Ghosh M, Sampathkumaran EV, Rao CNR (2005) Synthesis and magnetic properties of CoO nanoparticles. Chem Mater 17(9):2348–2352. doi: 10.1021/cm0478475 CrossRefGoogle Scholar
  27. Gillot F, Boyanov S, Dupont L, Doublet ML, Morcrette M, Monconduit L, Tarascon JM (2005) Electrochemical reactivity and design of nip2 negative electrodes for secondary Li-ion batteries. Chem Mater 17(25):6327–6337. doi: 10.1021/cm051574b CrossRefGoogle Scholar
  28. Gordon R, Bender R, Herman GT (1970) Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J Theor Biol 29(3):471–481. doi: 10.1016/0022-5193(70)90109-8 CrossRefGoogle Scholar
  29. Grosshans-Vièles S, Croizat P, Paillaud JL, Braunstein P, Ersen O, Rosé J, Lebeau B, Rabu P, Estournès C (2008) Molecular clusters in mesoporous materials as precursors to nanoparticles of a new lacunar ternary compound PdxMoyP. J Cluster Sci 19(1):73–88. doi: 10.1007/s10876-007-0171-4 CrossRefGoogle Scholar
  30. Guczi L, Beck A, Horváth A, Horváth D (2002) From molecular clusters to metal nanoparticles. Top Catal 19(2):157–163. doi: 10.1023/a:1015216205320 CrossRefGoogle Scholar
  31. Ha D-H, Moreau LM, Bealing CR, Zhang H, Hennig RG, Robinson RD (2011) The structural evolution and diffusion during the chemical transformation from cobalt to cobalt phosphide nanoparticles. J Mater Chem 21(31):11498–11510. doi: 10.1039/C1JM10337G CrossRefGoogle Scholar
  32. Haeiwa T, Segawa K, Konishi K (2007) Magnetic properties of isolated Co nanoparticles in SiO2 capsule prepared with reversed micelle. J Magn Magn Mater 310(2, Part 3):e809–e811. doi: 10.1016/j.jmmm.2006.10.769 CrossRefGoogle Scholar
  33. Henkes AE, Schaak RE (2007) Trioctylphosphine: a general phosphorus source for the low-temperature conversion of metals into metal phosphides. Chem Mater 19(17):4234–4242. doi: 10.1021/cm071021w CrossRefGoogle Scholar
  34. Henkes AE, Schaak RE (2008) Template-assisted synthesis of shape-controlled Rh2P nanocrystals. Inorg Chem 47(2):671–677. doi: 10.1021/ic701783f CrossRefGoogle Scholar
  35. Henkes AE, Vasquez Y, Schaak RE (2007) Converting metals into phosphides: a general strategy for the synthesis of metal phosphide nanocrystals. J Am Chem Soc 129(7):1896–1897. doi: 10.1021/ja068502l CrossRefGoogle Scholar
  36. Hermans S, Raja R, Thomas JM, Johnson BFG, Sankar G, Gleeson D (2001) Solvent-free, low-temperature, selective hydrogenation of polyenes using a bimetallic nanoparticle Ru–Sn catalyst. Angew Chem Int Ed 40(7):1211–1215. doi: 10.1002/1521-3773(20010401)40 CrossRefGoogle Scholar
  37. Hou H, Yang Q, Tan C, Ji G, Gu B, Xie Y (2004) One-pot solution-phase synthesis of paramagnetic Co2P nanorods. Chem Lett 33(10):1272–1273CrossRefGoogle Scholar
  38. Hou H, Peng Q, Zhang S, Guo Q, Xie Y (2005) A “user-friendly” chemical approach towards paramagnetic cobalt phosphide hollow structures: preparation, characterization, and formation mechanism of Co2P hollow spheres and tubes. Eur J Inorg Chem 2005(13):2625–2630. doi: 10.1002/ejic.200500033 CrossRefGoogle Scholar
  39. Ichiyanagi Y, Yamada S (2005) The size-dependent magnetic properties of Co3O4 nanoparticles. Polyhedron 24((16–17)):2813–2816. doi: 10.1016/j.poly.2005.03.158 CrossRefGoogle Scholar
  40. Jiang J, Kauzlarich SM (2005) Colossal magnetoresistance in a rare earth zintl compound with a new structure type: EuIn2P2. Chem Mater 18(2):435–441. doi: 10.1021/cm0520362 CrossRefGoogle Scholar
  41. Julián de Fernández C, Mattei G, Sangregorio C, Battaglin C, Gatteschi D, Mazzoldi P (2004) Superparamagnetism and coercivity in HCP-Co nanoparticles dispersed in silica matrix. J Magn Magn Mater 272–276(Supplement (0)):E1235–E1236. doi: 10.1016/j.jmmm.2003.12.1111 CrossRefGoogle Scholar
  42. Kremer JR, Mastronarde DN, McIntosh JR (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116(1):71–76. doi: 10.1006/jsbi.1996.0013 CrossRefGoogle Scholar
  43. Kuo HT, Chan TS, Bagkar NC, Liu GQ, Liu RS, Shen CH, Shy DS, Xing XK, Chen JM (2008) Effect of Co2P on electrochemical performance of Li(Mn0.35Co0.2Fe0.45)PO4/C. J Phys Chem B 112(27):8017–8023. doi: 10.1021/jp710708r CrossRefGoogle Scholar
  44. Ławecka M, Ślawska-Waniewska A, Racka K, Leonowicz M, Dzhardimalieva I, Rozenberg AS, Pomogailo AD (2004) Structure and magnetic properties of polymer matrix nanocomposite processed by pyrolysis of cobalt(II) acrylate. J Alloys Compd 369(1–2):244–246. doi: 10.1016/j.jallcom.2003.09.042 Google Scholar
  45. Li C, Leong WK (2008) The deposition of osmium carbonyl clusters onto inorganic oxide surfaces: a ToF-SIMS and IR spectroscopic study of the surface species. J Colloid Interface Sci 328(1):29–33. doi: 10.1016/j.jcis.2008.08.059 CrossRefGoogle Scholar
  46. Liu J, Chen X, Shao M, An C, Yu W, Qian Y (2003) Surfactant-aided solvothermal synthesis of dinickel phosphide nanocrystallites using red phosphorus as starting materials. J Cryst Growth 252(1–3):297–301. doi: 10.1016/S0022-0248(03)00939-4 CrossRefGoogle Scholar
  47. Liu S, Liu X, Xu L, Qian Y, Ma X (2007) Controlled synthesis and characterization of nickel phosphide nanocrystal. J Cryst Growth 304(2):430–434. doi: 10.1016/j.jcrysgro.2007.03.002 CrossRefGoogle Scholar
  48. Lukehart CM, Milne SB, Stock SR (1998) Formation of crystalline nanoclusters of Fe2P, RuP, Co2P, Rh2P, Ni2P, Pd5P2, or PtP2 in a silica xerogel matrix from single-source molecular precursors. Chem Mater 10(3):903–908. doi: 10.1021/cm970673p CrossRefGoogle Scholar
  49. Masselink WT, Hatami F, Mussler G, Schrottke L (2001) InP quantum dots in (100) GaP: growth and luminescence. Mater Sci Semicond Process 4(6):497–501. doi: 10.1016/S1369-8001(02)00008-2 CrossRefGoogle Scholar
  50. McAuliffe CA, Levason W (1979) Phosphine arsine and stibine complexes of the transition elements. Elsevier, AmsterdamGoogle Scholar
  51. Messaoudi C, Boudier T, Sorzano C, Marco S (2007) TomoJ: tomography software for three-dimensional reconstruction in transmission electron microscopy. BMC Bioinformatics 8(1):288CrossRefGoogle Scholar
  52. Moreno C, Macazaga MJ, Marcos ML, González-Velasco J, Delgado S (1993) [CO4(CO)12] derivatives with bis(diphenylphosphino) amine, an electrochemical study. J Organomet Chem 452(1–2):185–192. doi: 10.1016/0022-328X(93)83189-3 CrossRefGoogle Scholar
  53. Muthukumar K, Opahle I, Shen J, Jeschke HO, Valentí R (2011) Interaction of W(CO)6 with SiO2 surfaces: a density functional study. Phys Rev B 84(20):205442CrossRefGoogle Scholar
  54. Nikonova OA, Capron M, Fang G, Faye J, Mamede A-S, Jalowiecki-Duhamel L, Dumeignil F, Seisenbaeva GA (2011) Novel approach to rhenium oxide catalysts for selective oxidation of methanol to DMM. J Catal 279(2):310–318. doi: 10.1016/j.jcat.2011.01.028 CrossRefGoogle Scholar
  55. Nishikawa M, Kita E, Erata T, Tasaki A (1993) Enhanced magnetization in Co/MgO multilayer thin films. J Magn Magn Mater 126(1-3):303–306. doi: 10.1016/0304-8853(93)90609-6 CrossRefGoogle Scholar
  56. Ohta S, Onmayashiki H (1998) Antiferromagnetic stability and structural trend of transition-metal phosphides containing Co. Phys B 253(3–4):193–202. doi: 10.1016/S0921-4526(98)00381-0 CrossRefGoogle Scholar
  57. Osuna J, de Caro D, Amiens C, Chaudret B, Snoeck E, Respaud M, Broto J-M, Fert A (1996) Synthesis, characterization, and magnetic properties of cobalt nanoparticles from an organometallic precursor. J Phys Chem 100(35):14571–14574. doi: 10.1021/jp961086e CrossRefGoogle Scholar
  58. Oyama ST (2003) Novel catalysts for advanced hydroprocessing: transition metal phosphides. J Catal 216(1–2):343–352. doi: 10.1016/S0021-9517(02)00069-6 CrossRefGoogle Scholar
  59. Oyama ST, Gott T, Zhao H, Lee Y-K (2009) Transition metal phosphide hydroprocessing catalysts: a review. Catal Today 143(1–2):94–107. doi: 10.1016/j.cattod.2008.09.019 CrossRefGoogle Scholar
  60. Park J, Koo B, Hwang Y, Bae C, An K, Park J-G, Park HM, Hyeon T (2004) Novel synthesis of magnetic Fe2P nanorods from thermal decomposition of continuously delivered precursors using a syringe pump. Angew Chem Int Ed 43(17):2282–2285. doi: 10.1002/anie.200353562 CrossRefGoogle Scholar
  61. Park J, Koo B, Yoon KY, Hwang Y, Kang M, Park J-G, Hyeon T (2005) Generalized synthesis of metal phosphide nanorods via thermal decomposition of continuously delivered metal–phosphine complexes using a syringe pump. J Am Chem Soc 127(23):8433–8440. doi: 10.1021/ja0427496 CrossRefGoogle Scholar
  62. Peng W, Jiao L, Huan Q, Li L, Yang J, Zhao Q, Wang Q, Du H, Liu G, Si Y, Wang Y, Yuan H (2012) Co2P: a facile solid state synthesis and its applications in alkaline rechargeable batteries. J Alloys Compd 511(1):198–201. doi: 10.1016/j.jallcom.2011.09.029 CrossRefGoogle Scholar
  63. Perera SC, Fodor PS, Tsoi GM, Wenger LE, Brock SL (2003a) Application of de-silylation strategies to the preparation of transition metal pnictide nanocrystals: the case of FeP. Chem Mater 15(21):4034–4038. doi: 10.1021/cm034443o CrossRefGoogle Scholar
  64. Perera SC, Tsoi G, Wenger LE, Brock SL (2003b) Synthesis of MnP nanocrystals by treatment of metal carbonyl complexes with phosphines: a new, versatile route to nanoscale transition metal phosphides. J Am Chem Soc 125(46):13960–13961. doi: 10.1021/ja038037h CrossRefGoogle Scholar
  65. Phillips DC, Sawhill SJ, Self R, Bussell ME (2002) Synthesis, characterization, and hydrodesulfurization properties of silica-supported molybdenum phosphide catalysts. J Catal 207(2):266–273. doi: 10.1006/jcat 2002.3524CrossRefGoogle Scholar
  66. Prins R, Bussell M (2012) Metal phosphides: preparation, characterization and catalytic reactivity. Catal Lett 142(12):1413–1436. doi: 10.1007/s10562-012-0929-7 CrossRefGoogle Scholar
  67. Qian XF, Xie Y, Qian YT, Zhang XM, Wang WZ, Yang L (1997) Organo-thermal preparation of nanocrystalline cobalt phosphides. Mater Sci Eng B 49(2):135–137. doi: 10.1016/S0921-5107(97)00117-7 CrossRefGoogle Scholar
  68. Qian XF, Zhang XM, Wang C, Wang WZ, Qian YT (1998) A new way to prepare nanocrystalline dinickel phosphide. Mater Res Bull 33(5):669–672. doi: 10.1016/S0025-5408(98)00020-8 CrossRefGoogle Scholar
  69. Raja R, Hermans S, Shephard SD, Johnson FGB, Sankar G, Bromley S, Meurig Thomas J (1999) Preparation and characterisation of a highly active bimetallic (Pd–Ru) nanoparticle heterogeneous catalyst. Chem Commun 16:1571–1572. doi: 10.1039/a901263j CrossRefGoogle Scholar
  70. Rao CNR, Vivekchand SRC, Biswas K, Govindaraj A (2007) Synthesis of inorganic nanomaterials. Dalton Trans 34:3728–3749. doi: 10.1039/b708342d CrossRefGoogle Scholar
  71. Rao CNR, Ramakrishna Matte HSS, Voggu R, Govindaraj A (2012) Recent progress in the synthesis of inorganic nanoparticles. Dalton Trans 41(17):5089–5120. doi: 10.1039/c2dt12266a CrossRefGoogle Scholar
  72. Russier V, Petit C, Legrand J, Pileni MP (2000) Collective magnetic properties of cobalt nanocrystals self-assembled in a hexagonal network: theoretical model supported by experiments. Phys Rev B 62(6):3910–3916CrossRefGoogle Scholar
  73. Sawhill SJ, Phillips DC, Bussell ME (2003) Thiophene hydrodesulfurization over supported nickel phosphide catalysts. J Catal 215(2):208–219. doi: 10.1016/S0021-9517(03)00018-6 CrossRefGoogle Scholar
  74. Schweyer-Tihay F, Braunstein P, Estournès C, Guille JL, Lebeau B, Paillaud JL, Richard-Plouet M, Rosé J (2002) Synthesis and characterization of supported Co2P nanoparticles by grafting of molecular clusters into mesoporous silica matrices. Chem Mater 15(1):57–62. doi: 10.1021/cm020132m CrossRefGoogle Scholar
  75. Shephard DS, Maschmeyer T, Sankar G, Thomas JM, Ozkaya D, Johnson BFG, Raja R, Oldroyd RD, Bell RG (1998) Preparation, characterisation and performance of encapsulated copper–ruthenium bimetallic catalysts derived from molecular cluster carbonyl precursors. Chem–Eur J 4(7):1214–1224. doi: 10.1002/(SICI)1521-3765(19980710)4:7<1214:AID-CHEM1214>3.0.CO;2-E Google Scholar
  76. Shin HJ, Ryoo R, Kruk M, Jaroniec M (2001) Modification of SBA-15 pore connectivity by high-temperature calcination investigated by carbon inverse replication. Chem Commun 4:349–350. doi: 10.1039/b009762o CrossRefGoogle Scholar
  77. Singer JR (1956) Magnetic susceptibility of NiO and CoO single crystals. Phys Rev 104(4):929–932CrossRefGoogle Scholar
  78. Skumryev V, Stoyanov S, Zhang Y, Hadjipanayis G, Givord D, Nogues J (2003) Beating the superparamagnetic limit with exchange bias. Nature 423(6942):850–853CrossRefGoogle Scholar
  79. Souza DCS, Pralong V, Jacobson AJ, Nazar LF (2002) A reversible solid-state crystalline transformation in a metal phosphide induced by redox chemistry. Science 296(5575):2012–2015. doi: 10.1126/science.1071079 CrossRefGoogle Scholar
  80. Stratakis M, Garcia H (2012) Catalysis by supported gold nanoparticles: beyond aerobic oxidative processes. Chem Rev 112(8):4469–4506. doi: 10.1021/cr3000785 CrossRefGoogle Scholar
  81. Su HL, Xie Y, Li B, Liu XM, Qian YT (1999) A simple, convenient, mild solvothermal route to nanocrystalline Cu3P and Ni2P. Solid State Ion 122(1–4):157–160. doi: 10.1016/S0167-2738(99)00049-1 CrossRefGoogle Scholar
  82. Tegus O, Bruck E, Buschow KHJ, de Boer FR (2002) Transition-metal-based magnetic refrigerants for room-temperature applications. Nature 415(6868):150–152. doi: 10.1038/415150a CrossRefGoogle Scholar
  83. Thomas JM, Raja R (2004) Catalytic significance of organometallic compounds immobilized on mesoporous silica: economically and environmentally important examples. J Organomet Chem 689(24):4110–4124. doi: 10.1016/j.jorganchem.2004.07.052 CrossRefGoogle Scholar
  84. Thomas JM, Raja R, Johnson BFG, O’Connell TJ, Sankar G, Khimyak T (2003) Bimetallic nanocatalysts for the conversion of muconic acid to adipic acid. Chem Commun 10:1126–1127. doi: 10.1039/B300203A CrossRefGoogle Scholar
  85. Wang X, Clark P, Oyama ST (2002) Synthesis, characterization, and hydrotreating activity of several iron group transition metal phosphides. J Catal 208(2):321–331. doi: 10.1006/jcat 2002.3604CrossRefGoogle Scholar
  86. Wang J, Yang Q, Zhang Z, Sun S (2010) Phase-controlled synthesis of transition-metal phosphide nanowires by Ullmann-type reactions. Chem-Eur J 16(26):7916–7924. doi: 10.1002/chem.200902151 CrossRefGoogle Scholar
  87. Wong-Ng W, Ching WY, Xu Y-N, Kaduk JA, Shirotani I, Swartzendruber L (2003) Structure and electronic properties of the orthorhombic MoRuP superconductor prepared at high pressure. Phys Rev B 67(14):144523–144531. doi: 10.1103/PhysRevB.67.144523 CrossRefGoogle Scholar
  88. Xie Y, Su HL, Qian XF, Liu XM, Qian YT (2000) A mild one-step solvothermal route to metal phosphides (Metal = Co, Ni, Cu). J Solid State Chem 149(1):88–91. doi: 10.1006/jssc 1999.8499CrossRefGoogle Scholar
  89. Xu S, Ziegler J, Nann T (2008) Rapid synthesis of highly luminescent InP and InP/ZnS nanocrystals. J Mater Chem 18(23):2653–2656. doi: 10.1039/B803263G CrossRefGoogle Scholar
  90. Yang P, Jiang Z, Ying P, Li C (2008) Effect of surface composition on the catalytic performance of molybdenum phosphide catalysts in the hydrogenation of acetonitrile. J Catal 253(1):66–73. doi: 10.1016/j.jcat.2007.10.029 CrossRefGoogle Scholar
  91. Ye E, Zhang S-Y, Lim SH, Bosman M, Zhang Z, Win KY, Han M-Y (2011) Ternary cobalt–iron phosphide nanocrystals with controlled compositions, properties, and morphologies from nanorods and nanorice to split nanostructures. Chem-Eur J 17(21):5982–5988. doi: 10.1002/chem.201002698 CrossRefGoogle Scholar
  92. Yunle G, Fan G, Yitai Q, Huagui Z, Ziping Y (2002) A solvothermal synthesis of ultra-fine iron phosphide. Mater Res Bull 37(6):1101–1105. doi: 10.1016/S0025-5408(02)00749-3 CrossRefGoogle Scholar
  93. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998a) Triblock copolymer syntheses of mesoporous silica with periodic 50–300 angstrom pores. Science 279(5350):548–552CrossRefGoogle Scholar
  94. Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998b) Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc 120(24):6024–6036. doi: 10.1021/ja974025i CrossRefGoogle Scholar
  95. Zhao HY, Li D, Bui P, Oyama ST (2011) Hydrodeoxygenation of guaiacol as model compound for pyrolysis oil on transition metal phosphide hydroprocessing catalysts. Appl Catal A 391(1–2):305–310. doi: 10.1016/j.apcata.2010.07.039 CrossRefGoogle Scholar
  96. Zuzaniuk V, Prins R (2003) Synthesis and characterization of silica-supported transition-metal phosphides as HDN catalysts. J Catal 219(1):85–96. doi: 10.1016/S0021-9517(03)00149-0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Equipe Matériaux à Porosité Contrôlée (MPC)Institut de Science des Matériaux de Mulhouse (IS2M), UMR CNRS 7361 – UHA, ENSCMuMulhouse CedexFrance
  2. 2.Laboratoire de Chimie de CoordinationInstitut de Chimie (UMR 7177 CNRS, UdS)Strasbourg CedexFrance
  3. 3.IPCMS (UMR 7504 CNRS, UdS) and NIEStrasbourg Cedex 2France

Personalised recommendations