Skip to main content
Log in

Synthesis of self-passivated, and carbide-stabilized zirconium nanopowder

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

An electrochemical technique was used to synthesis air-stable zirconium nanoparticles by cathodically reducing a precursor of ZrO2 and carbon. It was possible by controlling the carbon content and the heat treatment procedure prior to the electro-deoxidation to produce different structures. At low carbon content and low initial sintering temperature, the nanoparticles are about 100 nm and tend to agglomerate to form micron-sized clusters passivated by a layer rich in oxygen. The passivation protocol has changed and was achieved through the strong Zr–C bond on the dispersed particles when ZrC was present in the cathode before electrolysis. It was also possible to control the size of the particles as small as 25 nm or less.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdelkader AM, El-Kashif E (2007) Calciothermic reduction of zirconium oxide in molten CaCl2. ISIJ Int 47(1):25–31

    Google Scholar 

  • Abdelkader AM, Fray DJ (2010) Direct electrochemical preparation of Nb-10Hf-1Ti alloy. Electrochim Acta 55(8):2924–2931

    Article  CAS  Google Scholar 

  • Abdelkader AM, Fray DJ (2012a) Electro-deoxidation of hafnium dioxide and niobia-doped hafnium dioxide in molten calcium chloride. Electrochim Acta 64:10–16

    Article  CAS  Google Scholar 

  • Abdelkader AM, Fray DJ (2012b) Electrochemical synthesis of hafnium carbide powder in molten chloride bath and its densification. J Eur Ceram Soc 32(16):4481–4487

    Article  CAS  Google Scholar 

  • Abdelkader AM, Hyslop DJS et al (2010) Electrochemical synthesis and characterization of a NdCo5 permanent magnet. J Mater Chem 20(29):6039–6049

    Article  CAS  Google Scholar 

  • Abdelkader AM, Kilby KT et al (2013) DC voltammetry of electro-deoxidation of solid oxides. Chem Rev 113(5):2863–2886

    Article  CAS  Google Scholar 

  • Arai T, Hirabayashi M (1976) Oxygen ordering in the Zr–O alloy: a structural, calorimetric and resistometric study. J Less Common Metals 44:291–300

    Article  CAS  Google Scholar 

  • Barraud E, Bégin-Colin S et al (2008) Mechanically activated solid-state synthesis of hafnium carbide and hafnium nitride nanoparticles. J Alloy Compd 456(1–2):224–233

    Article  CAS  Google Scholar 

  • Becker MF, Brock JR et al (1998) Metal nanoparticles generated by laser ablation. Nanostruct Mater 10(5):853–863

    Article  CAS  Google Scholar 

  • Berry AD, Stroud RM et al (2003) Synthesis and characterization of a nanophase zirconium powder. J Mater Chem 13(9):2388–2393

    Article  CAS  Google Scholar 

  • Bönnemann H, Brijoux W et al (1994) Preparation, characterization, and application of fine metal particles and metal colloids using hydrotriorganoborates. J Mol Catal 86(1–3):129–177

    Article  Google Scholar 

  • Dlott DD (2006) Thinking big (and small) about energetic materials. Mater Sci Technol 22(4):463–473

    Article  CAS  Google Scholar 

  • Dolgaev SI, Simakin AV et al (2002) Nanoparticles produced by laser ablation of solids in liquid environment. Appl Surf Sci 186(1–4):546–551

    Article  CAS  Google Scholar 

  • Epshteyn A, Purdy AP et al (2009) Sonochemical synthesis of air-insensitive carbide-stabilized hafnium subhydride nanopowder. Chem Mater 21(15):3469–3472

    Article  CAS  Google Scholar 

  • Epshteyn A, Yonke BL et al (2013) Sonochemically generated air-stable bimetallic nanopowders of group 4 transition metals with aluminum. Chem Mater 25(6):818–824

    Article  CAS  Google Scholar 

  • Fürstner A (1993) Chemistry of and with highly reactive metals. Angew Chem Int Ed Engl 32(2):164–189

    Article  Google Scholar 

  • Gendre M, Maître A et al (2010) A study of the densification mechanisms during spark plasma sintering of zirconium (oxy-)carbide powders. Acta Mater 58(7):2598–2609

    Article  CAS  Google Scholar 

  • Gendre M, Maître A et al (2011) Synthesis of zirconium oxycarbide (ZrCxOy) powders: influence of stoichiometry on densification kinetics during spark plasma sintering and on mechanical properties. J Eur Ceram Soc 31(13):2377–2385

    Article  CAS  Google Scholar 

  • Ghosh D, Pradhan S et al (2008) Titanium nanoparticles stabilized by Ti–C covalent bonds. Chem Mater 20(4):1248–1250

    Article  CAS  Google Scholar 

  • Goddard T (2006) A future for nuclear power. Phys World 19(4):15–17

    Google Scholar 

  • Golightly JS, Castleman AW (2007) Synthesis of zirconium nanoparticles by ultrafast laser ablation. Z Phys Chem 221(11–12):1455–1468

    Article  CAS  Google Scholar 

  • Gusev AI (1997) Radiation damage resistance of materials and nonstoichiometry. Doklady Phys Chem 357(4–6):373–376

    Google Scholar 

  • Holmberg B, Dagerham T (1961) X-Ray studies on solid solutions of oxygen in alpha-zirconium. Acta Chem Scand 15(4):919

    Article  CAS  Google Scholar 

  • Hyslop DJS, Abdelkader AM et al (2010) Utilization of constant current chronopotentiometry to synthesize a Co–Cr alloy. J Electrochem Soc 157(7):E111–E115

    Article  CAS  Google Scholar 

  • Kaufmann R, Klewe-Nebenius H et al (1988) XPS studies of the thermal behaviour of passivated Zircaloy-4 surfaces. Surf Interface Anal 11(10):502–509

    Article  CAS  Google Scholar 

  • Leprince-Ringuet F, Lejus AM, Collongues R (1964) Chimie minerale—sur la preparation et la fusion au four a plasma de carbures nitrures et oxynitrures refractaires. C R Hebd Seances Acad Sci 258(1):221–224

    Google Scholar 

  • Leslie-Pelecky DL, Rieke RD (1996) Magnetic properties of nanostructured materials. Chem Mater 8(8):1770–1783

    Article  CAS  Google Scholar 

  • Maitre A, Lefort P (1997) Solid state reaction of zirconia with carbon. Solid State Ionics 104(1–2):109–122

    Article  CAS  Google Scholar 

  • Mohandas KS, Fray DJ (2011) Novel electrochemical measurements on direct electro-deoxidation of solid TiO2 and ZrO2 in molten calcium chloride medium. J Appl Electrochem 41(3):321–336

    Article  CAS  Google Scholar 

  • Murphy AB (2004) Formation of titanium nanoparticles from a titanium tetrachloride plasma. J Phys D 37(20):2841–2847

    Article  CAS  Google Scholar 

  • Murty KL, Charit I (2008) Structural materials for Gen-IV nuclear reactors: challenges and opportunities. J Nucl Mater 383(1‚ Äì2):189–195

    Article  CAS  Google Scholar 

  • Roustila A, Chêne J et al (2003) XPS study of hydrogen and oxygen interactions on the surface of zirconium. J Alloys Compd 356‚Äì357(0):330–335

    Article  Google Scholar 

  • Sacks M, Wang C-A et al (2004) Carbothermal reduction synthesis of nanocrystalline zirconium carbide and hafnium carbide powders using solution-derived precursors. J Mater Sci 39(19):6057–6066

    Article  CAS  Google Scholar 

  • Thomsen P, Larsson C et al (1997) Structure of the interface between rabbit cortical bone and implants of gold, zirconium and titanium. J Mater Sci 8(11):653–665

    CAS  Google Scholar 

  • Tokushige M, Nishikiori T et al (2009) Synthesis of Ni nanoparticles by plasma-induced cathodic discharge electrolysis. J Appl Electrochem 39(10):1665–1670

    Article  CAS  Google Scholar 

  • Tokushige M, Nishikiori T et al (2010) Plasma-induced cathodic discharge electrolysis to form various metal/alloy nanoparticles. Russ J Electrochem 46(6):619–626

    Article  CAS  Google Scholar 

  • Vasquez Y, Henkes AE et al (2008) Nanocrystal conversion chemistry: a unified and materials-general strategy for the template-based synthesis of nanocrystalline solids. J Solid State Chem 181(7):1509–1523

    Article  CAS  Google Scholar 

  • Won YS, Kim YS et al (2007) Growth of ZrC thin films by aerosol-assisted MOCVD. J Cryst Growth 304(2):324–332

    Article  CAS  Google Scholar 

  • Yan C, Liu R et al (2012) Synthesis of submicrometer zirconium carbide formed from inorganic-organic hybrid precursor pyrolysis. J Sol–Gel Sci Technol 64(1):251–256

    Google Scholar 

  • Yen BK (1998) X-ray diffraction study of mechanochemical synthesis and formation mechanisms of zirconium carbide and zirconium silicides. J Alloy Compd 268(1–2):266–269

    Article  CAS  Google Scholar 

  • Yoshinaga M, Takahashi H et al (2007) Formation of metallic Ni nanoparticles on titania surfaces by chemical vapor reductive deposition method. J Colloid Interface Sci 309(1):149–154

    Article  CAS  Google Scholar 

  • Zheng YF, Liu XL et al (2008) Properties of Zr-ZrC-ZrC/DLC gradient films on TiNi alloy by the PIIID technique combined with PECVD. Surf Coat Technol 202(13):3011–3016

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amr M. Abdelkader.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 840 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdelkader, A.M., Fray, D.J. Synthesis of self-passivated, and carbide-stabilized zirconium nanopowder. J Nanopart Res 15, 2112 (2013). https://doi.org/10.1007/s11051-013-2112-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-2112-5

Keywords

Navigation