Skip to main content
Log in

tLyP-1-conjugated mesoporous silica nanoparticles for tumor targeting and penetrating hydrophobic drug delivery

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Mesoporous silica nanoparticles (MSNs) are among the most appealing candidates for targeted drug delivery, a process for which it is essential that nanoparticles be internalized into targeted cells with high speed and efficiency. Therefore, it is necessary to conjugate a targeting ligand to the surface of a nanocarrier in order to trigger rapid receptor-mediated endocytosis and effective cellular uptake, which occurs following recognition and selective binding to a target cell’s membrane receptor. Here, a tumor targeting and penetrating drug delivery system (DDS) based on MSNs (~100 nm in size) is described. The MSNs were functionalized by engrafting with the tumor-homing and penetrating peptide tLyP-1. The fabricated MSN–tLyP-1 loaded with camptothecin (CPT) showed a robust targeting and penetrating efficiency to HeLa cells and MCF-7 cells and induced the death of these cells. Moreover, the adverse side effect of CPT on human mesenchymal stem cells (hMSCs) was minimized, because the nanoparticles were selectively targeted to the tumor cells, and little hydrophobic CPT was released into the culture medium or blood. The results indicate that the MSN–tLyP-1 DDS has great potential for the delivery of hydrophobic anticancer drugs to target tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alitalo K, Tammela T, Petrova TV (2005) Lymphangiogenesis in development and human disease. Nature 438(7070):946–953. doi:10.1038/nature04480

    Article  CAS  Google Scholar 

  • Ambade AV, Savariar EN, Thayumanavan S (2005) Dendrimeric micelles for controlled drug release and targeted delivery. Mol Pharm 2(4):264–272. doi:10.1021/Mp050020d

    Article  CAS  Google Scholar 

  • Bernardos A, Aznar E, Marcos MD, Martinez-Manez R, Sancenon F, Soto J, Barat JM, Amoros P (2009) Enzyme-responsive controlled release using mesoporous silica supports capped with lactose. Angew Chem Int Ed Engl 48(32):5884–5887. doi:10.1002/anie.200900880

    Article  CAS  Google Scholar 

  • Chang BS, Guo J, Liu CY, Qian J, Yang WL (2010) Surface functionalization of magnetic mesoporous silica nanoparticles for controlled drug release. J Mater Chem 20(44):9941–9947. doi:10.1039/C0jm01237h

    Article  CAS  Google Scholar 

  • Ferris DP, Lu J, Gothard C, Yanes R, Thomas CR, Olsen JC, Stoddart JF, Tamanoi F, Zink JI (2011) Synthesis of biomolecule-modified mesoporous silica nanoparticles for targeted hydrophobic drug delivery to cancer cells. Small 7(13):1816–1826. doi:10.1002/smll.201002300

    Article  CAS  Google Scholar 

  • Gu F, Zhang L, Teply BA, Mann N, Wang A, Radovic-Moreno AF, Langer R, Farokhzad OC (2008) Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc Natl Acad Sci USA 105(7):2586–2591. doi:10.1073/pnas.0711714105

    Article  CAS  Google Scholar 

  • Li ZX, Barnes JC, Bosoy A, Stoddart JF, Zink JI (2012) Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev 41(7):2590–2605. doi:10.1039/C1cs15246g

    Article  CAS  Google Scholar 

  • Lin YS, Haynes CL (2010) Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity. J Am Chem Soc 132(13):4834–4842. doi:10.1021/Ja910846q

    Article  CAS  Google Scholar 

  • Liu LF, Desai SD, Li TK, Mao Y, Sun M, Sim SP (2000) Mechanism of action of camptothecin. Ann N Y Acad Sci 922:1–10

    Article  CAS  Google Scholar 

  • Lu J, Liong M, Zink JI, Tamanoi F (2007) Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small 3(8):1341–1346. doi:10.1002/smll.200700005

    Article  CAS  Google Scholar 

  • Lu J, Liong M, Li ZX, Zink JI, Tamanoi F (2010) Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small 6(16):1794–1805. doi:10.1002/smll.201000538

    Article  CAS  Google Scholar 

  • Luo G, Yu X, Jin C, Yang F, Fu D, Long J, Xu J, Zhan C, Lu W (2010) LyP-1-conjugated nanoparticles for targeting drug delivery to lymphatic metastatic tumors. Int J Pharm 385(1–2):150–156. doi:10.1016/j.ijpharm.2009.10.014

    Article  CAS  Google Scholar 

  • Mal NK, Fujiwara M, Tanaka Y (2003) Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature 421(6921):350–353. doi:10.1038/Nature01362

    Article  CAS  Google Scholar 

  • Muharnmad F, Guo MY, Qi WX, Sun FX, Wang AF, Guo YJ, Zhu GS (2011) pH-triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids. J Am Chem Soc 133(23):8778–8781. doi:10.1021/Ja200328s

    Article  Google Scholar 

  • Nishioka Y, Yoshino H (2001) Lymphatic targeting with nanoparticulate system. Adv Drug Deliver Rev 47(1):55–64. doi:10.1016/S0169-409x(00)00121-6

    Article  CAS  Google Scholar 

  • Onishi H, Machida Y (2005) Macromolecular and nanotechnological modification of camptothecin and its analogs to improve the efficacy. Curr Drug Discov Technol 2(3):169–183

    Article  CAS  Google Scholar 

  • Pan L, He Q, Liu J, Chen Y, Ma M, Zhang L, Shi J (2012) Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J Am Chem Soc 134(13):5722–5725. doi:10.1021/ja211035w

    Article  CAS  Google Scholar 

  • Park JH, Lee YH, Oh SG (2007) Preparation of thermosensitive PNIPAm-Grafted mesoporous silica particles. Macromol Chem Phys 208(22):2419–2427. doi:10.1002/macp.200700247

    Article  CAS  Google Scholar 

  • Popat A, Liu J, Lu GQ, Qiao SZ (2012) A pH-responsive drug delivery system based on chitosan coated mesoporous silica nanoparticles. J Mater Chem 22(22):11173–11178. doi:10.1039/C2jm30501a

    Article  CAS  Google Scholar 

  • Roca AG, Carmona D, Miguel-Sancho N, Bomati-Miguel O, Balas F, Piquer C, Santamaria J (2012) Surface functionalization for tailoring the aggregation and magnetic behaviour of silica-coated iron oxide nanostructures. Nanotechnology 23(15):155603. doi:10.1088/0957-4484/23/15/155603

    Article  CAS  Google Scholar 

  • Roth L, Agemy L, Kotamraju VR, Braun G, Teesalu T, Sugahara KN, Hamzah J, Ruoslahti E (2012) Transtumoral targeting enabled by a novel neuropilin-binding peptide. Oncogene 31(33):3754–3763. doi:10.1038/Onc.2011.537

    Article  CAS  Google Scholar 

  • Ruoslahti E, Bhatia SN, Sailor MJ (2010) Targeting of drugs and nanoparticles to tumors. J Cell Biol 188(6):759–768. doi:10.1083/jcb.200910104 jcb.200910104 [pii]

    Article  CAS  Google Scholar 

  • Teesalu T, Sugahara KN, Kotamraju VR, Ruoslahti E (2009) C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration. Proc Natl Acad Sci USA 106(38):16157–16162. doi:10.1073/pnas.0908201106

    Article  CAS  Google Scholar 

  • Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4(2):145–160. doi:10.1038/Nrd1632

    Article  CAS  Google Scholar 

  • Townsend SA, Evrony GD, Gu FX, Schulz MP, Brown RH Jr, Langer R (2007) Tetanus toxin C fragment-conjugated nanoparticles for targeted drug delivery to neurons. Biomaterials 28(34):5176–5184. doi:10.1016/j.biomaterials.2007.08.011

    Article  CAS  Google Scholar 

  • Tu HL, Lin YS, Lin HY, Hung Y, Lo LW, Chen YF, Mou CY (2009) In vitro studies of functionalized mesoporous silica nanoparticles for photodynamic therapy. Adv Mater 21(2):172. doi:10.1002/adma.200800548

    Article  CAS  Google Scholar 

  • Vicent MJ (2007) Polymer-drug conjugates as modulators of cellular apoptosis. AAPS J 9(2):E200–E207. doi:10.1208/Aapsj0902022

    Article  Google Scholar 

  • Vivero-Escoto JL, Slowing II, Wu CW, Lin VSY (2009) Photoinduced intracellular controlled release drug delivery in human cells by gold-capped mesoporous silica nanosphere. J Am Chem Soc 131(10):3462. doi:10.1021/Ja900025f

    Article  CAS  Google Scholar 

  • Xing L, Zheng H, Cao Y, Che S (2012) Coordination polymer coated mesoporous silica nanoparticles for pH-responsive drug release. Adv Mater. doi:10.1002/adma.201201742

    Google Scholar 

  • Xu B, Song G, Ju Y, Li X, Song Y, Watanabe S (2012) RhoA/ROCK, cytoskeletal dynamics, and focal adhesion kinase are required for mechanical stretch-induced tenogenic differentiation of human mesenchymal stem cells. J Cell Physiol 227(6):2722–2729. doi:10.1002/jcp.23016

    Article  CAS  Google Scholar 

  • Yan Z, Wang F, Wen Z, Zhan C, Feng L, Liu Y, Wei X, Xie C, Lu W (2012) LyP-1-conjugated PEGylated liposomes: a carrier system for targeted therapy of lymphatic metastatic tumor. J Control Release 157(1):118–125. doi:10.1016/j.jconrel.2011.07.034

    Article  CAS  Google Scholar 

  • Zhang Q, Liu F, Nguyen KT, Ma X, Wang XJ, Xing BG, Zhao YL (2012) Multifunctional mesoporous silica nanoparticles for cancer-targeted and controlled drug delivery. Adv Funct Mater 22(24):5144–5156. doi:10.1002/adfm.201201316

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI Grant Nos. 23246024 and 24656085.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Ju.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4261 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, B., Ju, Y., Song, G. et al. tLyP-1-conjugated mesoporous silica nanoparticles for tumor targeting and penetrating hydrophobic drug delivery. J Nanopart Res 15, 2105 (2013). https://doi.org/10.1007/s11051-013-2105-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-2105-4

Keywords

Navigation