Alternating voltage-induced electrochemical synthesis of colloidal Au nanoicosahedra

Research Paper


A simple method of alternating voltage-induced electrochemical synthesis has been developed to synthesize highly dispersed colloidal Au nanoicosahedra of 14 ± 3 nm in size. This simple and effective method uses a common transformer to apply a zero-offset alternating voltage to a pair of identical Au electrodes that are immersed in an electrolyte solution containing ligands. The obtained Au nanoicosahedra in this work are among the smallest Au icosahedra synthesized in aqueous solutions. A series of experimental conditions have been studied, such as voltage, the electrolyte identity and concentration, stabilizer identity and concentration, and reaction temperature. The mechanistic study indicates that Au nanoicosahedra are produced on electrode surfaces through an intermediate state of AuO x . The kinetic rate constant of these Au icosahedra in catalyzing the reduction of 4-nitrophenol with sodium borohydride is found much larger than the literature values of similar Au nanocrystals. In addition, the synthesis of Au–Pd-alloyed NCs has also been attempted.

Graphical Abstract


Colloidal nanocrystals Electrochemical synthesis Gold Icosahedra Minerals processing 



This material is based upon work supported by the Startup Fund for YY from the Colorado School of Mines.

Supplementary material

11051_2013_2065_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1131 kb)


  1. Bakrania SD, Rathore GK, Wooldridge MS (2009) An investigation of the thermal decomposition of gold acetate. J Therm Anal Calorim 95(1):117–122. doi: 10.1007/s10973-008-9173-1 CrossRefGoogle Scholar
  2. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New YorkGoogle Scholar
  3. Becker MF, Brock JR, Cai H, Henneke DE, Keto JW, Lee JY, Nichols WT, Glicksman HD (1998) Metal nanoparticles generated by laser ablation. Nanostruct Mater 10(5):853–863. doi: 10.1016/s0965-9773(98)00121-4 CrossRefGoogle Scholar
  4. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid–liquid system. J Chem Soc Chem Commun 7:801–802. doi: 10.1039/c39940000801 CrossRefGoogle Scholar
  5. Brust M, Bethell D, Schiffrin DJ, Kiely CJ (1995) Novel gold-dithiol nano-networks with nonmetallic electronic-properties. Adv Mater 7(9):795–797. doi: 10.1002/adma.19950070907 CrossRefGoogle Scholar
  6. Camli ST, Buyukserin F, Yavuz CT, Yavuz MS (2012) One-pot facile synthesis of PEGylated Au nanoparticles in an aqueous media. Mater Chem Phys 134(2–3):1153–1159. doi: 10.1016/j.matchemphys.2012.04.008 CrossRefGoogle Scholar
  7. Canitez FK, Yavuz MS, Ozturk R (2011) One-pot synthesis of gold nanoparticles using tetradentate porphyrins. J Nanopart Res 13(12):7219–7228. doi: 10.1007/s11051-011-0636-0 CrossRefGoogle Scholar
  8. Chen Y, Gu X, Nie CG, Jiang ZY, Xie ZX, Lin CJ (2005) Shape controlled growth of gold nanoparticles by a solution synthesis. Chem Commun 33:4181–4183. doi: 10.1039/b504911c CrossRefGoogle Scholar
  9. Chen LF, Leong GJ, Schulze M, Dinh HN, Pivovar B, Hu JC, Qi ZW, Fang YJ, Prikhodko S, Pozuelo M, Kodambaka S, Richards RM (2012) Controlled synthesis of nanoscale icosahedral gold particles at room temperature. ChemCatChem 4(10):1662–1667. doi: 10.1002/cctc.201200230 CrossRefGoogle Scholar
  10. Cloud JE, McCann K, Perera PAK, Yang Y (2013a) A simple method for producing c olloidal palladium nanocrystals: alternating voltage induced electrochemical synthesis. Small 9(5):2532–2536. doi: 10.1002/smll.201202470 CrossRefGoogle Scholar
  11. Cloud JE, Yoder TS, Harvey NK, Snow K, Yang Y (2013b) A simple and generic approach for synthesizing colloidal metal and metal Oxide nanocrystals. Nanoscale 5(16):7368–7378. doi: 10.1039/C3NR02404K CrossRefGoogle Scholar
  12. Cole JJ, Lin EC, Barry CR, Jacobs HO (2009) Continuous nanoparticle generation and assembly by atmospheric pressure arc discharge. Appl Phys Lett 95:113101. doi: 10.1063/1.3197646 CrossRefGoogle Scholar
  13. Cook KM, Ferguson GS (2013) Relative lability of gold-oxide thin films in contact with air, solvents, or electrolyte solutions. J Vac Sci Technol A 31:021508. doi: 10.1116/1.4791687 CrossRefGoogle Scholar
  14. Dasog M, Hou W, Scott RWJ (2011) Controlled growth and catalytic activity of gold monolayer protected clusters in presence of borohydride salts. Chem Commun 47(30):8569–8571. doi: 10.1039/c1cc11813g CrossRefGoogle Scholar
  15. Enache DI, Edwards JK, Landon P, Solsona-Espriu B, Carley AF, Herzing AA, Watanabe M, Kiely CJ, Knight DW, Hutchings GJ (2006) Solvent-free oxidation of primary alcohols to aldehydes using Au–Pd/TiO2 catalysts. Science 311(5759):362–365. doi: 10.1126/science.1120560 CrossRefGoogle Scholar
  16. Faraday M (1857) The bakerian lecture: experimental relations of gold (and other metals) to light. Philos Trans R Soc London 147:145–181CrossRefGoogle Scholar
  17. Flueli M, Spycher R, Stadelmann PA, Buffat PA, Borel JP (1988) High-resolution electron-microscopy (HREM) on icosahedral gold small particles—image simulation and observations. Europhys Lett 6(4):349–352. doi: 10.1209/0295-5075/6/4/012 CrossRefGoogle Scholar
  18. Haber F (1898) Z Anorg Chem 16:438CrossRefGoogle Scholar
  19. Haiss W, Thanh NTK, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV–Vis spectra. Anal Chem 79(11):4215–4221. doi: 10.1021/ac0702084 CrossRefGoogle Scholar
  20. Haruta M (1997) Size- and support-dependency in the catalysis of gold. Catal Today 36(1):153–166CrossRefGoogle Scholar
  21. Haruta M (2004) Gold as a novel catalyst in the 21st century: preparation, working mechanism and applications. Gold Bull 37(1–2):27–36CrossRefGoogle Scholar
  22. Henning AM, Watt J, Miedziak PJ, Cheong S, Santonastaso M, Song MH, Takeda Y, Kirkland AI, Taylor SH, Tilley RD (2013) Gold–palladium core–shell nanocrystals with size and shape control optimized for catalytic performance. Angew Chem Int Ed 52(5):1477–1480. doi: 10.1002/anie.201207824 CrossRefGoogle Scholar
  23. Huang W, Chen S, Zheng JF, Li ZL (2009) Facile preparation of Pt hydrosols by dispersing bulk Pt with potential perturbations. Electrochem Commun 11(2):469–472. doi: 10.1016/j.elecom.2008.12.021 CrossRefGoogle Scholar
  24. Huang CC, Lai WC, Tsai CY, Yang CH, Yeh CS (2012) Reversible synthesis of Sub-10 nm spherical and icosahedral gold nanoparticles from a covalent Au(CN)2-precursor and recycling of cyanide to form ferric ferrocyanide for cell staining. Chemistry 18(13):4107–4114. doi: 10.1002/chem.201103024 CrossRefGoogle Scholar
  25. Hughes MD, Xu YJ, Jenkins P, McMorn P, Landon P, Enache DI, Carley AF, Attard GA, Hutchings GJ, King F, Stitt EH, Johnston P, Griffin K, Kiely CJ (2005) Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. Nature 437(7062):1132–1135. doi: 10.1038/nature04190 CrossRefGoogle Scholar
  26. Jin RC, Wu GS, Li Z, Mirkin CA, Schatz GC (2003) What controls the melting properties of DNA-linked gold nanoparticle assemblies? J Am Chem Soc 125(6):1643–1654. doi: 10.1021/ja021096v CrossRefGoogle Scholar
  27. Juodkazis K, Juodkazyte J, Jasulaitiene V, Lukinskas A, Sebeka B (2000) XPS studies on the gold oxide surface layer formation. Electrochem Commun 2(7):503–507. doi: 10.1016/s1388-2481(00)00069-2 CrossRefGoogle Scholar
  28. Kabanov BN, Astakhov II, Kiseleva IG (1979) Formation of crystalline intermetallic compounds and solid solutions in electrochemical incorporation of metals into cathodes. Electrochim Acta 24:167–171CrossRefGoogle Scholar
  29. Khlebtsov NG (2008) Determination of size and concentration of gold nanoparticles from extinction spectra. Anal Chem 80(17):6620–6625. doi: 10.1021/ac800834n CrossRefGoogle Scholar
  30. Kim F, Connor S, Song H, Kuykendall T, Yang PD (2004) Platonic gold nanocrystals. Angew Chem Int Ed 43(28):3673–3677. doi: 10.1002/anie.200454216 CrossRefGoogle Scholar
  31. Kuai L, Geng BY, Wang SZ, Zhao YY, Luo YC, Jiang H (2011) Silver and gold icosahedra: one-pot water-based synthesis and their superior performance in the electrocatalysis for oxygen reduction reactions in alkaline media. Chemistry 17(12):3482–3489. doi: 10.1002/chem.201002949 CrossRefGoogle Scholar
  32. Kwon SG, Hyeon T (2008) Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides. Acc Chem Res 41(12):1696–1709. doi: 10.1021/ar8000537 CrossRefGoogle Scholar
  33. Kwon K, Lee KY, Lee YW, Kim M, Heo J, Ahn SJ, Han SW (2007) Controlled synthesis of icosahedral gold nanoparticles and their surface-enhanced Raman scattering property. J Phys Chem C 111(3):1161–1165. doi: 10.1021/jp064317i CrossRefGoogle Scholar
  34. Langille MR, Zhang J, Personick ML, Li SY, Mirkin CA (2012) Stepwise evolution of spherical seeds into 20-fold twinned icosahedra. Science 337(6097):954–957. doi: 10.1126/science.1225653 CrossRefGoogle Scholar
  35. Lee WK, Cha SH, Kim KH, Kim BW, Lee JC (2009) Shape-controlled synthesis of gold icosahedra and nanoplates using Pluronic P123 block copolymer and sodium chloride. J Solid State Chem 182(12):3243–3248. doi: 10.1016/j.jssc.2009.09.020 CrossRefGoogle Scholar
  36. Leontyev I, Kuriganova A, Kudryavtsev Y, Dkhil B, Smirnova N (2012) New life of a forgotten method: electrochemical route toward highly efficient Pt/C catalysts for low-temperature fuel cells. Appl Catal A 431:120–125. doi: 10.1016/j.apcata.2012.04.025 Google Scholar
  37. Lin Y, Watson KA, Ghose S, Smith JG, Williams TV, Crooks RE, Cao W, Connell JW (2009) Direct mechanochemical formation of metal nanoparticles on carbon nanotubes. J Phys Chem C 113(33):14858–14862. doi: 10.1021/jp905076u CrossRefGoogle Scholar
  38. Liu J, Huang W, Chen S, Hu S, Liu F, Li ZL (2009) Facile electrochemical dispersion of bulk Rh into hydrosols. Int J Electrochem Sci 4(9):1302–1308Google Scholar
  39. Lu SW, Frain V, Arbab M (2010) Formation of icosahedral gold nanocrystals on the glass surface. J Phys Chem C 114(30):12850–12854. doi: 10.1021/jp912254f CrossRefGoogle Scholar
  40. Ma HY, Yin BS, Wang SY, Jiao YL, Pan W, Huang SX, Chen SH, Meng FJ (2004) Synthesis of silver and gold nanoparticles by a novel electrochemical method. ChemPhysChem 5(1):68–75. doi: 10.1002/cphc.200300900 CrossRefGoogle Scholar
  41. Peng S, Lee YM, Wang C, Yin HF, Dai S, Sun SH (2008) A facile synthesis of monodisperse Au nanoparticles and their catalysis of CO oxidation. Nano Res 1(3):229–234. doi: 10.1007/s12274-008-8026-3 CrossRefGoogle Scholar
  42. Petrovic Z, Metikos-Hukovic M, Babic R, Katic J, Milun M (2009) A multi-technique study of gold oxidation and semiconducting properties of the compact alpha-oxide layer. J Electroanal Chem 629(1–2):43–49. doi: 10.1016/j.jelechem.2009.01.020 Google Scholar
  43. Peuckert M, Coenen FP, Bonzel HP (1984) On the surface oxidation of a gold electrode in in H2SO4 electrolyte. Surf Sci 141(2–3):515–532. doi: 10.1016/0039-6028(84)90146-8 CrossRefGoogle Scholar
  44. Qu D, Liu F, Yu JF, Xie WL, Xu Q, Li XD, Huang YD (2011) Plasmonic core–shell gold nanoparticle enhanced optical absorption in photovoltaic devices. Appl Phys Lett 98:113119. doi: 11311910.1063/1.3559225 CrossRefGoogle Scholar
  45. Reetz MT, Helbig W (1994) Size-selective synthesis of nanostructured transition-metal clusters. J Am Chem Soc 116(16):7401–7402. doi: 10.1021/ja00095a051 CrossRefGoogle Scholar
  46. Reetz MT, Helbig W, Quaiser SA, Stimming U, Breuer N, Vogel R (1995) Visualization of surfactants on nanostructured palladium clusters by a combination of STM and high-resolution TEM. Science 267(5196):367–369CrossRefGoogle Scholar
  47. Reyes-Gasga J, Tehuacanero-Nunez S, Montejano-Carrizales JM, Gao XX, Jose-Yacaman M (2007) Analysis of the contrast in icosahedral gold nanoparticles. Top Catal 46(1–2):23–30. doi: 10.1007/s11244-007-0311-y CrossRefGoogle Scholar
  48. Rodriguez P, Tichelaar FD, Koper MTM, Yanson AI (2011) Cathodic corrosion as a facile and effective method to prepare clean metal alloy nanoparticles. J Am Chem Soc 133(44):17626–17629. doi: 10.1021/ja208264e CrossRefGoogle Scholar
  49. Sakai N, Sasaki T, Matsubara K, Tatsuma T (2010) Layer-by-layer assembly of gold nanoparticles with titania nanosheets: control of plasmon resonance and photovoltaic properties. J Mater Chem 20(21):4371–4378. doi: 10.1039/c0jm00135j CrossRefGoogle Scholar
  50. Schiotz J, Di Tolla FD, Jacobsen KW (1998) Softening of nanocrystalline metals at very small grain sizes. Nature 391(6667):561–563. doi: 10.1038/35328 CrossRefGoogle Scholar
  51. Schmid G, Corain B (2003) Nanoparticulated gold: syntheses, structures, electronics, and reactivities. Eur J Inorg Chem 17:3081–3098. doi: 10.1002/ejic.200300187 CrossRefGoogle Scholar
  52. Stein M, Kiesler D, Kruis FE (2013) Effect of carrier gas composition on transferred arc metal nanoparticle synthesis. J Nanopart Res 15:1400CrossRefGoogle Scholar
  53. Storhoff JJ, Lazarides AA, Mucic RC, Mirkin CA, Letsinger RL, Schatz GC (2000) What controls the optical properties of DNA-linked gold nanoparticle assemblies? J Am Chem Soc 122(19):4640–4650. doi: 10.1021/ja993825l CrossRefGoogle Scholar
  54. Sun YG, Xia YN (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601):2176–2179. doi: 10.1126/science.1077229 CrossRefGoogle Scholar
  55. Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46(1–2):1–184. doi: 10.1016/s0079-6425(99)00010-9 CrossRefGoogle Scholar
  56. Tian N, Zhou ZY, Sun SG, Ding Y, Wang ZL (2007) Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316(5825):732–735. doi: 10.1126/science.1140484 CrossRefGoogle Scholar
  57. Tsai H, Hu E, Perng K, Chen M, Wu J-C, Chang Y-S (2003) Instability of gold oxide Au2O3. Surf Sci 537(1):L447–L450. doi: 10.1016/S0039-6028(03)00640-X CrossRefGoogle Scholar
  58. Turkevich J, Stevenson P, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75CrossRefGoogle Scholar
  59. Turova N (2011) Inorganic chemistry in tables, vol IV. English translation of the Russian edition (Vissh. Khim. Kolledzh Rus. Acad. Nauk), MMCME, Moscow Center For Continuous Mathematical Education, 2009, ISBN 978-5-94057-451-4. Springer, Moscow. doi:  10.1007/978-3-642-20487-6
  60. Valden M, Lai X, Goodman DW (1998) Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281(5383):1647–1650. doi: 10.1126/science.281 5383.1647CrossRefGoogle Scholar
  61. Wang YL, Xia YN (2004) Bottom-up and top-down approaches to the synthesis of monodispersed spherical colloids of low melting-point metals. Nano Lett 4(10):2047–2050. doi: 10.1021/nl048689j CrossRefGoogle Scholar
  62. Waraich PS, Tan B, Venkatakrishnan K (2011) Laser ablation of microparticles for nanostructure generation. J Nanopart Res 13(10):5251–5256. doi: 10.1007/s11051-011-0510-0 CrossRefGoogle Scholar
  63. Waseda Y, Matsubara E, Shinoda K (2011) X-ray diffraction crystallography: introduction, examples and solved problems. Springer, Berlin. doi: 10.1007/978-3-642-16635-8 CrossRefGoogle Scholar
  64. Whitesides GM, Mathias JP, Seto CT (1991) Molecular self-assembly and nanochemistry—a chemical strategy for the synthesis of nanostructures. Science 254(5036):1312–1319. doi: 10.1126/science.1962191 CrossRefGoogle Scholar
  65. Wu JB, Qi L, You HJ, Gross A, Li J, Yang H (2012) Icosahedral platinum alloy nanocrystals with enhanced electrocatalytic activities. J Am Chem Soc 134(29):11880–11883. doi: 10.1021/ja303950v CrossRefGoogle Scholar
  66. Wunder S, Polzer F, Lu Y, Mei Y, Ballauff M (2010) Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes. J Phys Chem C 114(19):8814–8820. doi: 10.1021/jp101125j CrossRefGoogle Scholar
  67. Xia SJ, Birss VI (2001) A multi-technique study of compact and hydrous Au oxide growth in 0.1 M sulfuric acid solutions. J Electroanal Chem 500(1–2):562–573. doi: 10.1016/s0022-0728(00)00415-0 Google Scholar
  68. Xia X, Xie S, Liu M, Peng H-C, Lu N, Wang J, Kim MJ, Xia Y (2013) On the role of surface diffusion in determining the shape or morphology of noble-metal nanocrystals. Proc Natl Acad Sci USA 110(17):6669–6673. doi: 10.1073/pnas.1222109110 CrossRefGoogle Scholar
  69. Xiang C, Guell AG, Brown MA, Kim JY, Hemminger JC, Penner RM (2008) Coupled electrooxidation and electrical conduction in a single gold nanowire. Nano Lett 8(9):3017–3022. doi: 10.1021/nl8021175 CrossRefGoogle Scholar
  70. Xiao CF, Chen SM, Zhang LY, Zhou SQ, Wu WT (2012) One-pot synthesis of responsive catalytic Au@PVP hybrid nanogels. Chem Commun 48(96):11751–11753. doi: 10.1039/c2cc36002k CrossRefGoogle Scholar
  71. Yang YA, Wu HM, Williams KR, Cao YC (2005) Synthesis of CdSe and CdTe nanocrystals without precursor injection. Angew Chem Int Ed 44(41):6712–6715. doi: 10.1002/anie.200502279 CrossRefGoogle Scholar
  72. Yang Y, Taggart DK, Brown MA, Xiang C, Kung S-C, Yang F, Hemminger JC, Penner RM (2009) Wafer-scale patterning of lead telluride nanowires: structure, characterization, and electrical properties. ACS Nano 3(12):4144–4154. doi: 10.1021/nn901173p CrossRefGoogle Scholar
  73. Yanson AI, Rodriguez P, Garcia-Araez N, Mom RV, Tichelaar FD, Koper MTM (2011) Cathodic corrosion: a quick, clean, and versatile method for the synthesis of metallic nanoparticles. Angew Chem Int Ed 50(28):6346–6350. doi: 10.1002/anie.201100471 CrossRefGoogle Scholar
  74. Yanson AI, Antonov PV, Yanson YI, Koper MTM (2013) Controlling the size of platinum nanoparticles prepared by cathodic corrosion. Electrochim Acta. doi: 10.1016/j.electacta.2013.1003.1121 Google Scholar
  75. Yavuz MS, Li WY, Xia YN (2009) Facile synthesis of gold icosahedra in an aqueous solution by reacting HAuCl4 with N-vinyl pyrrolidone. Chemistry 15(47):13181–13187. doi: 10.1002/chem.200901440 CrossRefGoogle Scholar
  76. Yu YY, Chang SS, Lee CL, Wang CRC (1997) Gold nanorods: electrochemical synthesis and optical properties. J Phys Chem B 101(34):6661–6664CrossRefGoogle Scholar
  77. Zhang CX, Zhang JL, Han BX, Zhao YJ, Li W (2008) Synthesis of icosahedral gold particles by a simple and mild route. Green Chem 10(10):1094–1098. doi: 10.1039/b805392h CrossRefGoogle Scholar
  78. Zhang QB, Xie JP, Yang JH, Lee JY (2009) Monodisperse icosahedral Ag, Au, and Pd Nanoparticles: size control strategy and superlattice formation. ACS Nano 3(1):139–148. doi: 10.1021/nn800531q CrossRefGoogle Scholar
  79. Zhang QB, Xie JP, Yu Y, Yang JH, Lee JY (2010) Tuning the crystallinity of Au nanoparticles. Small 6(4):523–527. doi: 10.1002/smll.200902033 CrossRefGoogle Scholar
  80. Zhou M, Chen SH, Zhao SY (2006) Synthesis of icosahedral gold nanocrystals: a thermal process strategy. J Phys Chem B 110(10):4510–4513. doi: 10.1021/jp060200i CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Kevin McCann
    • 1
  • Jacqueline E. Cloud
    • 1
  • Yongan Yang
    • 1
  1. 1.Department of Chemistry and GeochemistryColorado School of MinesGoldenUSA

Personalised recommendations