Skip to main content
Log in

Experimental and numerical study on the optical properties and agglomeration of nanoparticle suspensions

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanoparticles have garnered significant interest because of their ability to enhance greatly the optical properties of the base fluid in which they are suspended. The optical properties of nanoparticles are sensitive to the materials used, as well as to the host medium. Most fluids exhibit refractive indices that are highly temperature-dependent, resulting in nanoparticle suspensions which also exhibit temperature-dependent optical properties. Previous work has shown that temperature increases result in decreased absorption in nanoparticle suspensions. Here, we expand previous work to include core–shell particles due to the potential spectral shifts in optical properties that will arise from the base fluid with temperature changes and the role of agglomeration under temperature cycling through both experimental and numerical efforts. Thermal cycling tests for silica and gold, the constituents of the core–shell nanoparticles used in this study, were tested to determine the extent of particle agglomeration resulting from up to 200 accelerated heating cycles. Optical properties were recorded after heating two base fluids (water and ethylene glycol) with multiple surfactants for silver nanospheres and silica–gold core–shell nanoparticles. It was found that the temperature results in a small increase in the transmittance for both particle types and a blue shift in the spectral transmittance for core–shell nanoparticles. Further, the coupling effect of temperature and agglomeration played a significant role in determining both the spectral properties—particularly the resulting transmittance—of the silver nanoparticle suspensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Averitt RD, Westcott SL, Halas NJ (1999) Linear optical properties of gold nanoshells. J Opt Soc Am B 16:1824. doi:10.1364/JOSAB.16.001824

    Article  CAS  Google Scholar 

  • Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles, p 544. John Wiley & Sons, New York, NY

  • Cussler EL (2009) Diffusion: mass transfer in fluid systems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Han D, Meng Z, Wu D et al (2011) Thermal properties of carbon black aqueous nanofluids for solar absorption. Nanoscale Res Lett 6:457. doi:10.1186/1556-276X-6-457

    Article  Google Scholar 

  • Howell JR, Siegel R, Pinar Menguc M (2011) Thermal radiation heat transfer, 5th edn. CRC Press, Boca Raton, FL

    Google Scholar 

  • Kreibig U, Vollmer M (2010) Optical properties of metal clusters. Springer, New York, NY

    Google Scholar 

  • Kumar S, Tien CL (1990a) Analysis of combined radiation and convection in a particulate-laden liquid film. J Sol Energy Eng 112:293–300

    Article  CAS  Google Scholar 

  • Kumar S, Tien CL (1990b) Dependent absorption and extinction of radiation by small particles. J Heat Transf (Transactions of the ASME (American Society of Mechanical Engineers), Series C); (United States) 112:1

    Google Scholar 

  • Lee BJ, Park K, Walsh T, Xu L (2012) Radiative heat transfer analysis in plasmonic nanofluids for direct solar thermal absorption. J Sol Energy Eng 134:021009. doi:10.1115/1.4005756

    Article  Google Scholar 

  • Lv W, Phelan PE, Swaminathan R et al (2013) Multifunctional core-shell nanoparticle suspensions for efficient absorption. J Sol Energy Eng 135:021005. doi:10.1115/1.4007845

    Google Scholar 

  • Mätzler C (2002) MATLAB functions for Mie scattering and absorption version 1. University of Bern, Bern, Switzerland

  • Mercatelli L, Sani E, Zaccanti G et al (2011) Absorption and scattering properties of carbon nanohorn-based nanofluids for direct sunlight absorbers. Nanoscale Res Lett 6:282. doi:10.1186/1556-276X-6-282

    Article  Google Scholar 

  • Mock JJ, Smith DR, Schultz S (2003) Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Lett 3:485–491. doi:10.1021/nl0340475

    Article  CAS  Google Scholar 

  • Nanosight (2012) Nanoparticle size analysis, particle size software, LM10-HS-Products-NanoSight

  • Nozawa K, Gailhanou H, Raison L et al (2005) Smart control of monodisperse Stöber silica particles: effect of reactant addition rate on growth process. Langmuir 21:1516–1523. doi:10.1021/la048569r

    Article  CAS  Google Scholar 

  • Otanicar TP, Phelan PE, Golden JS (2009) Optical properties of liquids for direct absorption solar thermal energy systems. Sol Energy 83:969–977. doi:10.1016/j.solener.2008.12.009

    Article  CAS  Google Scholar 

  • Otanicar TP, Phelan PE, Prasher RS et al (2010) Nanofluid-based direct absorption solar collector. J Renew Sustain Energy 2:033102. doi:10.1063/1.3429737

    Article  Google Scholar 

  • Otanicar T, Brunter S, Higgins B et al (2012) Temperature dependent optical properties of nanoparticle suspensions. 2012 ASME Heat Transfer Conference

  • Sacadura J-F (2011) Thermal radiative properties of complex media: theoretical prediction versus experimental identification. Heat Transfer Eng 32:754–770. doi:10.1080/01457632.2011.525140

    Article  CAS  Google Scholar 

  • Sani E, Barison S, Pagura C et al (2010) Carbon nanohorns-based nanofluids as direct sunlight absorbers. Opt Express 18:4613–4616. doi:10.1007/s00170-008-1876-8(2009

    Article  Google Scholar 

  • Schuller JA, Barnard ES, Cai W et al (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9:193–204. doi:10.1038/nmat2630

    Article  CAS  Google Scholar 

  • Sommer M, Stenger F, Peukert W, Wagner NJ (2006) Agglomeration and breakage of nanoparticles in stirred media mills—a comparison of different methods and models. Chem Eng Sci 61:135–148. doi:10.1016/j.ces.2004.12.057

    Article  CAS  Google Scholar 

  • Taylor RA, Phelan PE (2009) Pool boiling of nanofluids: comprehensive review of existing data and limited new data. Int J Heat Mass Transf 52:5339–5347. doi:10.1016/j.ijheatmasstransfer.2009.06.040

    Article  CAS  Google Scholar 

  • Taylor RA, Phelan PE, Otanicar TP et al (2011a) Nanofluid optical property characterization: towards efficient direct absorption solar collectors. Nanoscale Res Lett 6:225. doi:10.1186/1556-276X-6-225

    Article  Google Scholar 

  • Taylor RA, Phelan PE, Otanicar TP et al (2011b) Applicability of nanofluids in high flux solar collectors. J Renew Sustain Energy 3:023104. doi:10.1063/1.3571565

    Article  Google Scholar 

  • Taylor R, Coulombe S, Otanicar T et al (2013) Small particles, big impacts: a review of the diverse applications of nanofluids. J Appl Phys 113:011301. doi:10.1063/1.4754271

    Article  Google Scholar 

  • Wang X-Q, Mujumdar AS (2007) Heat transfer characteristics of nanofluids: a review. Int J Therm Sci 46:1–19. doi:10.1016/j.ijthermalsci.2006.06.010

    Article  Google Scholar 

  • Wang P, Huang B, Dai Y, Whangbo M-H (2012) Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles. Phys Chem Chem Phys 14:9813–9825. doi:10.1039/c2cp40823f

    Article  CAS  Google Scholar 

  • Winsemius P, van Kampen FF, Lengkeek HP, van Went CG (1976) Temperature dependence of the optical properties of Au, Ag and Cu. J Phys F Met Phys 6:1583–1606. doi:10.1088/0305-4608/6/8/017

    Article  CAS  Google Scholar 

  • Yu W, Xie H (2012) A review on nanofluids: preparation, stability mechanisms, and applications. J Nanomater 2012:1–17. doi:10.1155/2012/435873

    Google Scholar 

Download references

Acknowledgments

T.P.O, J.H., and M.F. gratefully acknowledge the support of the US National Science Foundation through award CBET-1262201. R.A.T. acknowledges the financial support of the Transfield Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd Otanicar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otanicar, T., Hoyt, J., Fahar, M. et al. Experimental and numerical study on the optical properties and agglomeration of nanoparticle suspensions. J Nanopart Res 15, 2039 (2013). https://doi.org/10.1007/s11051-013-2039-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-2039-x

Keywords

Navigation