Skip to main content
Log in

Improved activity of immobilized horseradish peroxidase on gold nanoparticles in the presence of bovine serum albumin

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The using of macromolecular additives is known to be a simple and effective way to improve the activity of immobilized enzymes on solid support, yet the mechanism has not been well understood. Taking horseradish peroxidase (HRP) as an example, only 30 % of its catalytic activity was kept after being immobilized on the surface of 25-nm Au nanoparticles, mainly attributed to the conformational change of the heme-containing active site. The catalytic activity of HRP was significantly improved to 80 % when a certain amount of bovine serum albumin (BSA) was added at the initial stage of the immobilization. Systematic spectral investigation indicated that the addition of BSA inhibited the tertiary structure change around the active site, which was a prerequisite for improved activity of the immobilized HRP. Steady-state kinetic analyses revealed that the introduction of BSA could effectively improve the turnover rate of substrate to product in spite of slight reduced affinity to substrates, which also contributed to the improved catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abad JM, Mertens SFL, Pita M, Fernández VM, Schiffrin DJ (2005) Functionalization of thiocticacid-capped gold nanoparticles for specific immobilization of histidine-tagged proteins. J Am Chem Soc 127:5689–5694. doi:10.1021/ja042717i

    Article  CAS  Google Scholar 

  • Ambrosi A, Castañeda MT, Killard AJ, Smyth MR, Alegret S, Merkoçi A (2007) Double-codified gold nanolabels for enhanced immunoanalysis. Anal Chem 79:5232–5240. doi:10.1021/ac070357m

    Article  CAS  Google Scholar 

  • Aubin-Tam ME, Zhou H, Hamad-Schifferli K (2008) Structure of cytochrome c at the interface with magnetic CoFe2O4 nanoparticles. Soft Matter 4:554–559. doi:10.1039/B711937B

    Article  CAS  Google Scholar 

  • Baek H, Lee C, Park J, Kim Y, Koo B, Shin H, Wang DY, Cho J (2012) Layer-by-layer assembled Enzyme multilayer with adjustable memory performance and low power consumption via molecular-level control. J Mater Chem 22:4645–4651. doi:10.1039/C2JM16231H

    Article  CAS  Google Scholar 

  • Bernardino S, Estrela N, Ochoa-Mendes V, Fernandes P, Fonseca LP (2011) Optimization in the immobilization of penicillin G acylase by entrapment in Xerogel particles with magnetic properties. J Sol-Gel Sci Technol 58:545–556. doi:10.1007/s10971-011-2426-7

    Article  CAS  Google Scholar 

  • Chattopadhyay K, Mazumdar S (2000) Structural and conformational stability of horseradish peroxidase: effect of temperature and pH. Biochemistry 39:263–270. doi:10.1021/bi990729o

    Article  CAS  Google Scholar 

  • Choi Y, Cho Y, Kim M, Grailhe R, Song R (2012) Fluorogenic quantum dot-gold nanoparticles assembly for beta secretase inhibitor screening in live cell. Anal Chem 84:8595–8601. doi:10.1021/ac301574b

    Article  CAS  Google Scholar 

  • Copeland RA (2000) Enzymes: a practical introduction to structure, mechanism, and data analysis, 2nd edn edn. Wiley-VCH, New York, pp 120–121

    Google Scholar 

  • De M, Ghosh PS, Rotello VM (2008) Applications of nanoparticles in biology. Adv. Mater. 20: 4225–4241 and references therein. doi: 10.1002/adma.200703183

    Google Scholar 

  • Draijer R, Atsma DE, Van der Laarse A, van Hinsbergh VW (1995) cGMP and nitric oxide modulate thrombin-induced endothelial permeability: regulation via different pathways in human aortic and umbilical vein endothelial cells. Circ Res 76:199–208. doi:10.1161/01.RES.76.2.199

    Article  CAS  Google Scholar 

  • Dunford HB (1999) Spectroscopy of horseradish peroxidase. I: optical, resonance Raman, magnetic circular dichroism, X-ray absorption, and diffraction. In: Heme peroxidases. Wiley, New York, pp 135–174

  • Dunford HB, Stillman JS (1976) On the function and mechanism of action of peroxidases. Coord Chem Rev 19:187–251. doi:10.1016/S0010-8545(00)80316-1

    Article  CAS  Google Scholar 

  • Feis A, Marzocchi MP, Mauro Paoli, Smulevich G (1994) Spin state and axial ligand bonding in the hydroxide complexes of metmyoglobin, methemoglobin, and horseradish peroxidase at room and low temperatures. Biochemistry 33:4577–4583. doi:10.1021/bi00181a019

    Article  CAS  Google Scholar 

  • Fischer NO, McIntosh CM, Simard JM, Rotello VM (2002) Inhibition of chymotrypsin through surface binding using nanoparticle-based receptors. Proc Natl Acad Sci USA 99:5018–5023. doi:10.1073/pnas.082644099

    Article  CAS  Google Scholar 

  • Fischer NO, Verma A, Goodman CM, Simard JM, Rotello VM (2003) Reversible “irreversible” inhibition of chymotrypsin using nanoparticle receptors. J Am Chem Soc 125:13387–13391. doi:10.1021/ja0352505

    Article  CAS  Google Scholar 

  • Frey A, Meckelein B, Externest D, Schmidt MA (2000) A stable and highly sensitive 3, 3′, 5, 5′-tetramethylbenzidine-based substrate reagent for enzyme-linked immunosorbent assays. J Immunol Methods 233:47–56. doi:10.1016/S0022-1759(99)00166-0

    Article  CAS  Google Scholar 

  • Greenfield N, Fasman GD (1969) Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 8:4108–4116. doi:10.1021/bi00838a031

    Article  CAS  Google Scholar 

  • Hong R, Fischer NO, Verma A, Goodman CM, Emrick T, Rotello VM (2004) Control of protein structure and function through surface recognition by tailored nanoparticle scaffolds. J Am Chem Soc 126:739–743. doi:10.1021/ja037470o

    Article  CAS  Google Scholar 

  • Howes BD, Rodriguez-Lopez JN, Smith AT, Smulevich G (1997) Mutation of distal residues of horseradish peroxidase: influence on substrate binding and cavity properties. Biochemistry 36:1532–1543. doi:10.1021/bi962502o

    Article  CAS  Google Scholar 

  • Hsu M-C, Woody RW (1971) The origin of the heme cotton effects in myoglobin and hemoglobin. J Am Chem Soc 93:3515–3525. doi:10.1021/ja00743a036

    Article  CAS  Google Scholar 

  • Iizuka T, Ogawaa S, Inubushi T, Yonezawaa T, Morishimaa I (1976) NMR studies of hemoproteins: pH dependence of ferric horseradish peroxidase and horse heart myoglobin. FEBS Lett 64:156–158. doi:10.1016/0014-5793(76)80272-4

    Article  CAS  Google Scholar 

  • Ji XH, Song XN, Li J, Bai YB, Yang WS, Peng XG (2007) Size control of gold nanocrystals in citrate reduction: the third role of citrate. J Am Chem Soc 129:13939–13948. doi:10.1021/ja074447k

    Article  CAS  Google Scholar 

  • Josephy PD, Eling T, Mason RP (1982) The horseradish peroxidase-catalyzed oxidation of 3, 5, 3′, 5′-tetramethylbenzidine free radical and charge-transfer complex intermediates. J Biol Chem 257:3669–3675

    CAS  Google Scholar 

  • Katz E, Willner I (2004) Integrated nanoparticle–biomolecule hybrid systems: synthesis, properties, and applications. Angew. Chem. Int. Ed. 43: 6042–6108 and references therein. doi: 10.1002/anie.200400651

  • Li M, Wang QY, Shi XD, Hornak LA, Wu NQ (2011) Detection of mercury (II) by quantum dot/DNA/gold nanoparticle ensemble based nanosensor via nanometal surface energy transfer. Anal Chem 83:7061–7065. doi:10.1021/ac2019014

    Article  CAS  Google Scholar 

  • Morishima I, Ogawa S, Inubushi T, Yonezawa T, Iizuka T (1977) Nuclear magnetic resonance studies of hemoproteins acid-alkaline transition, ligand binding characteristics, and structure of the heme environments in horseradish peroxidase. Biochemistry 16:5109–5115. doi:10.1021/bi00642a025

    Article  CAS  Google Scholar 

  • Muñoz G, de Juan A (2007) pH- and time-dependent hemoglobin transitions: a case study for process modeling. Anal Chim Acta 595:198–208. doi:10.1016/j.aca.2006.11.08

    Article  Google Scholar 

  • Nelson DP, Kiesow LA (1972) Enthalpy of decomposition of hydrogen peroxide by catalase at 25°C (with molar extinction coefficients of H2O2 solutions in the UV). Anal Biochem 49:474–478. doi:10.1016/0003-2697(72)90451-4

    Article  CAS  Google Scholar 

  • Reetz MT, Zonta A, Simpelkamp J (1996) Efficient immobilization of lipases by entrapment in hydrophobic sol-gel materials. Biotechnol Bioeng 49:527–534. doi:10.1002/(SICI)1097-0290(19960305)49:5<527:AID-BIT5>3.0.CO;2-L

    Article  CAS  Google Scholar 

  • Rodrigues DS, Cavalcante GP, Silva GF, Ferreira ALO, Gonçalves LRB (2008) Effect of additives on the esterification activity of immobilized Candida Antarctica lipase. World J Microbiol Biotechnol 24:833–839. doi:10.1007/s11274-007-9548-7

    Article  CAS  Google Scholar 

  • Rodríguez-López JN, Gilabert MA, Tudela J, Thorneley RNF, García-Cánovas F (2000) Reactivity of horseradish peroxidase compound II toward substrates: kinetic evidence for a two-step mechanism. Biochemistry 39:13201–13209. doi:10.1021/bi001150p

    Article  Google Scholar 

  • Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639. doi:10.1021/ac60214a047

    Article  CAS  Google Scholar 

  • Shang W, Nuffer JH, Muñiz-Papandrea VA, Colón W, Siegel RW, Dordick JS (2009) Cytochrome c on silica nanoparticles: iInfluence of nanoparticle size on protein structure, stability, and activity. Small 5:470–476. doi:10.1002/smll.200800995

    Article  CAS  Google Scholar 

  • Singh AK, Kilpatrick PK, Carbonell RG (1995) Noncompetitive immunoassays using bifunctional unilamellar vesicles or liposomes. Biotechnol Prog 11:333–341. doi:10.1021/bp00033a014

    Article  CAS  Google Scholar 

  • Soares CMF, Santana MHA, Zanin GM, de Castro HF (2003) Covalent coupling method for lipase immobilization on controlled pore silica in the presence of nonenzymatic proteins. Biotechnol Prog 19:803–807. doi:10.1021/bp025779q

    Article  CAS  Google Scholar 

  • Tsaprailis G, Chan DWS, English AM (1998) Conformational states in denaturants of cytochrome c and horseradish peroxidases examined by fluorescence and circular dichroism. Biochemistry 37:2004–2016. doi:10.1021/bi971032a

    Article  CAS  Google Scholar 

  • Veitch NC (2004) Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry 65:249–259. doi:10.1016/j.phytochem.2003.10.022

    Article  CAS  Google Scholar 

  • Wehtje E, Adlercreutz P, Mattiasson B (1993) Improved activity retention of enzymes deposited on solid supports. Biotechnol Bioeng 41:171–178. doi:10.1002/bit.260410202

    Article  CAS  Google Scholar 

  • Welsch N, Wittemann A, Ballauff M (2009) Enhanced activity of enzymes immobilized in thermoresponsive core-shell microgels. J Phys Chem B 113:16039–16045. doi:10.1021/jp907508w

    Article  CAS  Google Scholar 

  • Wu XY, Narsimhan G (2008a) Characterization of secondary and tertiary conformational changes of β-lactoglobulin adsorbed on silica nanoparticle surfaces. Langmuir 24:4989–4998. doi:10.1021/la703349c

    Article  CAS  Google Scholar 

  • Wu XY, Narsimhan G (2008b) Effect of surface concentration on secondary and tertiary conformational changes of lysozyme adsorbed on silica nanoparticles. Biochim Biophys Acta 1784:1694–1701. doi:10.1016/j.bbapap.2008.06.008

    Article  CAS  Google Scholar 

  • Wu CZ, Bai S, Ansorge-Schumacher MB, Wang DY (2011) Nanoparticle cages for enzyme catalysis in organic media. Adv Mater 23:5694–5699. doi:10.1002/adma.201102693

    Article  CAS  Google Scholar 

  • You C-C, De M, Rotello VM (2005) Contrasting effects of exterior and interior hydrophobic moieties in the complexation of amino acid functionalized gold clusters with α-chymotrypsin. Org Lett 7:5685–5688. doi:10.1021/ol052367k

    Article  CAS  Google Scholar 

  • Zhou HW, Xu Y, Zhou HM (2002) Activity and conformational changes of horseradish peroxidase in trifluoroethanol. Biochem Cell Biol 80:205–213. doi:10.1139/o02-003

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Research Fund for Fundamental Key Project (Nos. 2011CB935800, 2009CB939701) and the National Natural Science Foundation of China (Nos. 21073078 and 51072064). We are grateful to Prof. M. Y. Han for valuable discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wensheng Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 417 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ni, Y., Li, J., Huang, Z. et al. Improved activity of immobilized horseradish peroxidase on gold nanoparticles in the presence of bovine serum albumin. J Nanopart Res 15, 2038 (2013). https://doi.org/10.1007/s11051-013-2038-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-2038-y

Keywords

Navigation