Advertisement

Evaluating the capabilities of portable black carbon monitors and photometers for measuring airborne carbon nanotubes

  • Naomi Hashimoto
  • Isamu Ogura
  • Mari Kotake
  • Atsuo Kishimoto
  • Kazumasa Honda
Research Paper

Abstract

For daily monitoring of occupational exposure to aerosolized carbon nanotubes (CNTs) where CNTs are manufactured and handled, inexpensive real-time measuring methods are preferable. In this study, we evaluated the capabilities of a portable black carbon monitor (BCM; also called an aethalometer) and a light-scattering aerosol photometer in detecting airborne CNTs. The responses of these instruments to airborne CNTs, aerosolized through vortex shaking, were evaluated by comparing the measurements of CNT mass concentrations made by these instruments to those determined through thermal carbon analysis. Results showed that their raw readings underestimated CNT mass concentrations in most cases. Their sensitivities depended on the type of CNTs and decreased with the particle sizes of aerosolized CNT clumps. We also found that the sensitivity of the BCM tended to substantially decrease with increasing filter load, even before the point at which the filter should be replaced as recommended by the manufacturer, which could be attributed to a clean environmental condition (i.e., the absence of ubiquitous light-scattering material). As an example of the use of these instruments for measuring airborne CNTs in the presence of background aerosols, a CNT-handling simulation was also conducted. Although both the BCM and the photometer could detect CNT emissions, the BCM was more sensitive to the detection of emitted CNTs in the presence of background aerosols. The correction factors obtained from the response evaluations could enhance the measurement accuracy of these instruments, which will be helpful for the daily monitoring of CNTs at workplaces.

Keywords

Aerosols Carbon nanotubes CNTs Exposure Light-scattering photometer Black carbon monitor Aethalometer 

Notes

Acknowledgments

This work was funded by the New Energy and Industrial Technology Development Organization of Japan (NEDO) under a Grant for “Innovative carbon nanotubes composite materials project toward achieving a low-carbon society” (No. P10024).

Supplementary material

11051_2013_2033_MOESM1_ESM.pptx (254 kb)
Supplementary material 1 (PPTX 254 kb)

References

  1. Allen GA, Lawrence J, Koutrakis P (1999) Field validation of a semi-continuous method for aerosol black carbon (aethalometer) and temporal patterns of summertime hourly black carbon measurements in southwestern PA. Atmos Environ 33:817–823. doi: 10.1016/S1352-2310(98)00142-3 CrossRefGoogle Scholar
  2. Arnott WP, Hamasha K, Moosmüller H, Sheridan PJ, Ogren JA (2005) Towards aerosol light absorption measurements with a 7-wavelength aethalometer: evaluation with a photoacoustic instrument and 3-wavelength nephelometer. Aerosol Sci Technol 39:17–29. doi: 10.1080/027868290901972 CrossRefGoogle Scholar
  3. Babich P, Davey M, Allen G, Koutrakis P (2000) Method comparisons for particulate nitrate, elemental carbon, and PM2.5 mass in seven U.S. cities. J Air Waste Manag Assoc 50:1095–1105. doi: 10.1080/10473289.2000.10464152 CrossRefGoogle Scholar
  4. Baron PA, Deye GJ, Chen BT, Schwegler-Berry DE, Shvedova AA, Castranova V (2008) Aerosolization of single-walled carbon nanotubes for an inhalation study. Inhalation Toxicol 20:751–760. doi: 10.1080/08958370801975303 CrossRefGoogle Scholar
  5. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297:787–792. doi: 10.1126/science.1060928 CrossRefGoogle Scholar
  6. Berry MV, Percival IC (1986) Optics of fractal clusters such as smoke. Optica Acta 33:577–591. doi: 10.1080/713821987 CrossRefGoogle Scholar
  7. Birch ME, Cary RA (1996) Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Sci Technol 25:221–241. doi: 10.1080/02786829608965393 CrossRefGoogle Scholar
  8. Birch ME, Ku BK, Evans DE, Ruda-Eberenz TA (2011) Exposure and emissions monitoring during carbon nanofiber production—part I: elemental carbon and iron-soot aerosols. Ann Occup Hyg 55:1016–1136. doi: 10.1093/annhyg/mer073 CrossRefGoogle Scholar
  9. Boczkowski J, Lanone S (2012) Respiratory toxicities of nanomaterials—a focus on carbon nanotubes. Adv Drug Deliv Rev 64:1694–1699. doi: 10.1016/j.addr.2012.05.011 CrossRefGoogle Scholar
  10. Butterfield D, Beccaceci S, Quincey P, Sweeney B, Whiteside K, Fuller G, Green D, Grieve A (2012) 2011 Annual Report for the UK Black Carbon Network, NPL Report AS 70. http://uk-air.defra.gov.uk/library/reports?report_id=730. Accessed 3 Oct 2013
  11. Colbeck I, Hardman EJ, Harrison RM (1989) Optical and dynamical properties of fractal clusters of carbonaceous smoke. J Aerosol Sci 20:765–774. doi: 10.1016/0021-8502(89)90088-8 CrossRefGoogle Scholar
  12. Colbeck I, Appleby L, Hardman EJ, Harrison RM (1990) The optical properties and morphology of cloud-processed carbonaceous smoke. J Aerosol Sci 21:527–538. doi: 10.1016/0021-8502(90)90129-L CrossRefGoogle Scholar
  13. Dahm MM, Evans DE, Schubauer-Berigan MK, Birch ME, Fernback JE (2012) Occupational exposure assessment in carbon nanotube and nanofiber primary and secondary manufacturers. Ann Occup Hyg 56:542–556. doi: 10.1093/annhyg/mes079 Google Scholar
  14. Dahm MM, Evans DE, Schubauer-Berigan MK, Birch ME, Deddens JA (2013) Occupational exposure assessment in carbon nanotube and nanofiber primary and secondary manufacturers: mobile direct-reading sampling. Ann Occup Hyg 57:328–344. doi: 10.1093/annhyg/mes079 CrossRefGoogle Scholar
  15. Donaldson K, Murphy FA, Duffin R, Poland CA (2010) Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol 7:5. doi: 10.1186/1743-8977-7-5 CrossRefGoogle Scholar
  16. Evans DE, Ku BK, Birch ME, Dunn KH (2010) Aerosol monitoring during carbon nanofiber production: mobile direct-reading sampling. Ann Occup Hyg 54:514–531. doi: 10.1093/annhyg/meq015 CrossRefGoogle Scholar
  17. Ferrero L, Mocnik G, Ferrini BS, Perrone MG, Sangiorgi G, Bolzacchini E (2011) Vertical profiles of aerosol absorption coefficient from micro-Aethalometer data and Mie calculation over Milan. Sci Total Environ 409:2824–2837. doi: 10.1016/j.scitotenv.2011.04.022
  18. Fujitani Y, Furuyama A, Hirano S (2009) Generation of airborne multi-walled carbon nanotubes for inhalation studies. Aerosol Sci Technol 43:881–890. doi: 10.1080/08958370802712713 CrossRefGoogle Scholar
  19. Gundel LA, Dod RL, Rosen H, Novakov T (1984) The relationship between optical attenuation and black carbon concentration for ambient and source particles. Sci Total Environ 36:197–202. doi: 10.1016/0048-9697(84)90266-3 CrossRefGoogle Scholar
  20. Han JH, Lee EJ, Lee JH, So KP, Lee YH, Bae GN, Lee SB, Ji JH, Cho MH, Yu IJ (2008) Monitoring multiwalled carbon nanotube exposure in carbon nanotube research facility. Inhalation Toxicol 20:741–749. doi: 10.1080/08958370801942238 CrossRefGoogle Scholar
  21. Hansen ADA, Rosen H, Novakov T (1984) The Aethelometer—an instrument for the real-time measurement of optical absorption by aerosol particles. Sci Total Environ 36:191–196. doi: 10.1016/0048-9697(84)90265-1 CrossRefGoogle Scholar
  22. Hinds WC (1999) Aerosol technology: properties, behavior, and measurement of airborne particles, 2nd edn. Wiley, New YorkGoogle Scholar
  23. Horvath H (1995) Size segregated light absorption coefficient of the atmospheric aerosol. Atmos Environ 29:875–883. doi: 10.1016/1352-2310(95)00025-T CrossRefGoogle Scholar
  24. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58. doi: 10.1038/354056a0 CrossRefGoogle Scholar
  25. Kam W, Cheung K, Daher N, Sioutas C (2011) Particulate matter (PM) concentrations in underground and ground-level rail systems of the Los Angeles Metro. Atmos Environ 45:1506–1516. doi: 10.1016/j.atmosenv.2010.12.049 CrossRefGoogle Scholar
  26. Ku BK, Maynard AD, Baron PA, Deye GJ (2007) Observation and measurement of anomalous responses in a differential mobility analyzer caused by ultrafine fibrous carbon aerosols. J Electrostat 65:542–548. doi: 10.1016/j.elstat.2006.10.012 CrossRefGoogle Scholar
  27. Lee JH, Lee SB, Bae GN, Jeon KS, Yoon JU, Ji JH, Sung JH, Lee BG, Lee JH, Yang JS, Kim HY, Kang CS, Yu IJ (2010) Exposure assessment of carbon nanotube manufacturing workplaces. Inhalation Toxicol 22:369–381. doi: 10.3109/08958370903367359 CrossRefGoogle Scholar
  28. Liousse C, Cachier H, Jennings SG (1993) Optical and thermal measurements of black carbon aerosol content in different environments: variation of the specific attenuation cross-section, sigma (σ). Atmos Environ 27A:1203–1211. doi: 10.1016/0960-1686(93)90246-U Google Scholar
  29. Lu W, Zu M, Byun JH, Kim BS, Chou TW (2012) State of the art of carbon nanotube fibers: opportunities and challenges. Adv Mater 24:1805–1833. doi: 10.1002/adma.201104672 CrossRefGoogle Scholar
  30. Luizi F (2009) Responsible care and nanomaterials—case study Nanocyl European Responsible Care Conference (Prague, Czech Republic, 21–23 October 2009). http://www.cefic.org/Documents/ResponsibleCare/04_Nanocyl.pdf. Accessed 3 Oct 2013
  31. Ma-Hock L, Treumann S, Strauss V, Brill S, Luizi F, Mertler M, Wiench K, Gamer AO, van Ravenzwaay B, Landsiedel R (2009) Inhalation toxicity of multiwall carbon nanotubes in rats exposed for 3 months. Toxicol Sci 112:468–481. doi: 10.1093/toxsci/kfp146 CrossRefGoogle Scholar
  32. Maynard AD, Baron PA, Foley M, Shvedova AA, Kisin ER, Castranova V (2004) Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material. J Toxicol Environ Health A 67:87–107. doi: 10.1080/15287390490253688 CrossRefGoogle Scholar
  33. Methner MM, Birch ME, Evans DE, Ku BK, Crouch K, Hoover MD (2007) Identification and characterization of potential sources of worker exposure to carbon nanofibers during polymer composite laboratory operations. J Occup Environ Hyg 4:D125–D130. doi: 10.1080/15459620701683871 CrossRefGoogle Scholar
  34. Methner M, Hodson L, Dames A, Geraci C (2010) Nanoparticle emission assessment technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials—part B: results from 12 field studies. J Occup Environ Hyg 7:163–176. doi: 10.1080/15459620903508066 CrossRefGoogle Scholar
  35. Methner M, Beaucham C, Crawford C, Hodson L, Geraci C (2012) Field application of the Nanoparticle Emission Assessment Technique (NEAT): task-based air monitoring during the processing of engineered nanomaterials (ENM) at four facilities. J Occup Environ Hyg 9:543–555. doi: 10.1080/15459624.2012.699388 CrossRefGoogle Scholar
  36. Morimoto Y, Horie M, Kobayashi N, Shinohara N, Shimada M (2013) Inhalation toxicity assessment of carbon-based nanoparticles. Acc Chem Res 46:770–781. doi: 10.1021/ar200311b CrossRefGoogle Scholar
  37. Myojo T, Oyabu T, Nishi K, Kadoya C, Tanaka I, Ono-Ogasawara M, Sakae H, Shirai T (2009) Aerosol generation and measurement of multi-wall carbon nanotubes. J Nanopart Res 11:91–99. doi: 10.1007/s11051-008-9450-8 CrossRefGoogle Scholar
  38. Nagai H, Okazaki Y, Chew SH, Misawa N, Yamashita Y, Akatsuka S, Ishihara T, Yamashita K, Yoshikawa Y, Yasui H, Jiang L, Ohara H, Takahashi T, Ichihara G, Kostarelos K, Miyata Y, Shinohara H, Toyokuni S (2011) Diameter and rigidity of multiwalled carbon nanotubes are critical factors in mesothelial injury and carcinogenesis. Proc Natl Acad Sci USA 108:E1330–E1338. doi: 10.1073/pnas.1110013108 CrossRefGoogle Scholar
  39. Nakanishi J (ed) (2011) Risk assessment of manufactured nanomaterials: carbon nanotubes (CNT). Final report issued on August 17, 2011. NEDO project (P06041) “Research and Development of Nanoparticle Characterization Methods.” http://www.aist-riss.jp/main/modules/product/nano_rad.html?ml_lang=en. Accessed 3 Oct 2013
  40. Ogura I, Sakurai H, Gamo M (2009) Dustiness testing of engineered nanomaterials. J Phys Conf Ser 170:012003. doi: 10.1088/1742-6596/170/1/012003 CrossRefGoogle Scholar
  41. Ogura I, Kotake M, Sakurai H, Gamo M (2012) Emission and exposure assessment of manufactured nanomaterials. English Version. (26 October 2012). NEDO project (P06041) “Research and Development of Nanoparticle Characterization Methods.” http://www.aist-riss.jp/main/modules/product/nano_rad.html?ml_lang=en. Accessed 3 Oct 2013
  42. Ogura I, Kotake M, Hashimoto N, Gotoh K, Kishimoto A (2013) Release characteristics of single-wall carbon nanotubes during manufacturing and handling. J Phys Conf Ser 429:012057. doi: 10.1088/1742-6596/429/1/012057 CrossRefGoogle Scholar
  43. Ono-Ogasawara M, Myojo T (2011) A proposal of method for evaluating airborne MWCNT concentration. Ind Health 49:726–734. doi: 10.2486/indhealth.MS1279 CrossRefGoogle Scholar
  44. Ono-Ogasawara M, Takaya M, Kubota H, Shinohara Y, Koda S, Akiba E, Tsuruoka S, Myojo T (2013) Approach to the exposure assessment of MWCNT by considering size distribution and oxidation temperature of elemental carbon. J Phys Conf Ser 429:012004. doi: 10.1088/1742-6596/429/1/012004 CrossRefGoogle Scholar
  45. Pauluhn J (2010) Multi-walled carbon nanotubes (Baytubes®): approach for deviation of occupational exposure limit. Regul Toxicol Pharmacol 57:78–89. doi: 10.1016/j.yrtph.2009.12.012 CrossRefGoogle Scholar
  46. Petzold A, Kopp C, Niessner R (1997) The dependence of the specific attenuation cross-section on black carbon mass fraction and particle size. Atmos Environ 31:661–672. doi: 10.1016/S1352-2310(96)00245-2 CrossRefGoogle Scholar
  47. Popov VN (2004) Carbon nanotubes: properties and application. Mater Sci Eng R Rep 43:61–102. doi: 10.1016/j.mser.2003.10.001 CrossRefGoogle Scholar
  48. R’mili B, Dutouquet C, Sirven JB, Aguerre-Chariol O, Frejafon E (2011) Analysis of particle release using LIBS (laser-induced breakdown spectroscopy) and TEM (transmission electron microscopy) samplers when handling CNT (carbon nanotube) powders. J Nanopart Res 13:563–577. doi: 10.1007/s11051-010-0050-z CrossRefGoogle Scholar
  49. Ramachandran G, Adgate JL, Hill N, Sexton K, Pratt GC, Bock D (2000) Comparison of short-term variations (15-minute averages) in outdoor and indoor PM2.5 concentrations. J Air Waste Manag Assoc 50:1157–1166. doi: 10.1080/10473289.2000.10464160 CrossRefGoogle Scholar
  50. Rasmussen PE, Jayawardene I, Gardner HD, Chénier M, Levesque C, Niu J (2013) Metal impurities provide useful tracers for identifying exposures to airborne single-wall carbon nanotube particles released from work-related processes. J Phys Conf Ser 429:012007. doi: 10.1088/1742-6596/429/1/012007 CrossRefGoogle Scholar
  51. Reed RB, Goodwin DG, Marsh KL, Capracotta SS, Higgins CP, Fairbrother DH, Ranville JF (2013) Detection of single walled carbon nanotubes by monitoring embedded metals. Environ Sci 15:204–213. doi: 10.1039/C2EM30717K Google Scholar
  52. Schulte PA, Kuempel ED, Zumwalde RD, Geraci CL, Schubauer-Berigan MK, Castranova V, Hodson L, Murashov V, Dahm MM, Ellenbecker M (2012) Focused actions to protect carbon nanotube workers. Am J Ind Med 55:395–411. doi: 10.1002/ajim.22028 CrossRefGoogle Scholar
  53. Shvedova AA, Pietroiusti A, Fadeel B, Kagan VE (2012) Mechanisms of carbon nanotube-induced toxicity: focus on oxidative stress. Toxicol Appl Pharmacol 261:121–133. doi: 10.1016/j.taap.2012.03.023 CrossRefGoogle Scholar
  54. Sorensen CM, Gebhart J, O’Hern TJ, Rader DJ (2011) Optical measurement techniques: fundamentals and applications. In: Baron PA, Kulkarni P, Willeke K (eds) Aerosol measurement: principles, techniques, and applications, 3rd edn. Wiley, Hoboken, pp 269–312CrossRefGoogle Scholar
  55. Takaya M, Ono-Ogasawara M, Shinohara Y, Kubota H, Tsuruoka S, Koda S (2012) Evaluation of exposure risk in the weaving process of MWCNT-coated yarn with real-time particle concentration measurements and characterization of dust particles. Ind Health 50:147–155. doi: 10.2486/indhealth.MS1312 CrossRefGoogle Scholar
  56. TSI Inc. (2009) Measuring total suspended particulates (TSP) with aerosol photometers. Application Note ITI-058. http://www.tsi.com/uploadedFiles/_Site_Root/Products/Literature/Application_Notes/ITI-058.pdf. Accessed 3 Oct 2013
  57. US NIOSH (2003) Method 5040 Issue 3, Diesel particulate matter (as Elemental Carbon). NIOSH manual of analytical methods, 4th edn. NMAM. www.cdc.gov/niosh/docs/2003-154/pdfs/5040.pdf. Accessed 3 Oct 2013
  58. US NIOSH (2013) NIOSH current intelligence bulletin 65: occupational exposure to carbon nanotubes and nanofibers. http://www.cdc.gov/niosh/docs/2013-145/. Accessed 3 Oct 2013
  59. Virkkula A, Mäkelä T, Hillamo R, Yli-Tuomi T, Hirsikko A, Hämeri K, Koponen IK (2007) A simple procedure for correcting loading effects of aethalometer data. J Air Waste Manag Assoc 57:1214–1222. doi: 10.3155/1047-3289.57.10.1214 CrossRefGoogle Scholar
  60. Wang Y, Hopke PK, Rattigan OV, Chalupa DC, Utell MJ (2012) Multiple-year black carbon measurements and source apportionment using delta-C in Rochester, New York. J Air Waste Manag Assoc 62:880–887. doi: 10.1080/10962247.2012.671792 CrossRefGoogle Scholar
  61. Weingartner E, Saathoff H, Schnaiter M, Streit N, Bitnar B, Baltensperger U (2003) Absorption of light by soot particles: determination of the absorption coefficient by means of aethalometers. J Aerosol Sci 34:1445–1463. doi: 10.1016/S0021-8502(03)00359-8 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Naomi Hashimoto
    • 1
  • Isamu Ogura
    • 1
    • 2
  • Mari Kotake
    • 1
  • Atsuo Kishimoto
    • 1
    • 2
  • Kazumasa Honda
    • 1
    • 2
  1. 1.Technology Research Association for Single Wall Carbon Nanotubes (TASC)TsukubaJapan
  2. 2.Research Institute of Science for Safety and Sustainability (RISS)National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan

Personalised recommendations