Skip to main content
Log in

Facile deposition of gold nanoparticles on C60 microcrystals with unique shapes

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Gold nanoparticles were densely deposited on the surface of C60 microcrystals having a variety of unique shapes. C60 microcrystals were prepared by a conventional liquid–liquid reprecipitation method. The shapes of C60 microcrystals, such as bipyramid, belt, disc, and rod, were achieved by carefully adjusting the solvent species in the liquid–liquid reprecipitation process. Gold nanoparticles were directly deposited on C60 microcrystals without adding any conventional reducing agent but only heating HAuCl4 in C60 microcrystals ethanol dispersion containing CS2. Scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, powder X-ray diffraction, absorption spectroscopy, and X-ray photoelectron spectroscopy studies were conducted to characterize the gold–C60 heterostructure. The gold–C60 heterostructure showed charge transfer behaviour where gold was an electron donor and C60 was an electron acceptor. C60 microcrystals-supported gold nanoparticles also showed catalytic activity in reduction of p-nitrophenol at room temperature. A facile reduction mechanism was suggested for gold deposition on the surface of C60 microcrystals.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allemand PM, Khemani KC, Koch A, Wudl F, Holczer K, Donovan S, Grüner G, Thompson JD (1991) Organic molecular soft ferromagnetism in a fullerene C60. Science 253:301–303. doi:10.1126/science.253.5017.301

    Article  CAS  Google Scholar 

  • Asanuma H, Subedi P, Hartmann J, Shen Y, Möhwald H, Nakanishi T, Skirtach A (2013) Nanoplasmonic modification of the local morphology, shape, and wetting properties of nanoflake microparticles. Langmuir. doi:10.1021/la304550n

    Google Scholar 

  • Averitt RD, Sarkar D, Halas NJ (1997) Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth. Phys Rev Lett 78:4217–4220. doi:10.1103/PhysRevLett.78.4217

    Article  CAS  Google Scholar 

  • Ayyappan S, Srinivasa Gopalan R, Subbanna GN, Rao CNR (1997) Nanoparticles of Ag, Au, Pd, and Cu produced by alcohol reduction of the salts. J Mater Res 12:398–401. doi:10.1557/JMR.1997.0057

    Article  CAS  Google Scholar 

  • Brust M, Kiely CJ, Bethell D, Schiffrin DJ (1998) C60 mediated aggregation of gold nanoparticles. J Am Chem Soc 120:12367–12368. doi:10.1021/ja982776u

    Article  CAS  Google Scholar 

  • Corma A, Garcia H (2008) Supported gold nanoparticles as catalysts for organic reactions. Chem Soc Rev 37:2096–2126. doi:10.1039/B707314N

    Article  CAS  Google Scholar 

  • Cortie MB, van der Lingen E (2002) Catalytic gold nano-particles. Mater Forum 26:1–14

    CAS  Google Scholar 

  • Diederich F, Gómez-López M (1999) Supramolecular fullerene chemistry. Chem Soc Rev 28:263–277. doi:10.1039/A804248I

    Article  CAS  Google Scholar 

  • Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotubes. Academic Press, San Diego

    Google Scholar 

  • Fujigaya T, Morimoto T, Niidome Y, Nakashima N (2008) NIR laser-driven reversible volume phase transition of single-walled carbon nanotube/poly(N-isopropylacrylamide) composites gels. Adv Mater 20:3610–3614. doi:10.1002/adma.200800494

    Article  CAS  Google Scholar 

  • Fujihara H, Nakai H (2001) Fullerenethiolate-functionalized gold nanoparticles: a new class of surface-confined metal–C60 nanocomposites. Langmuir 17:6393–6395. doi:10.1021/la0111250

    Article  CAS  Google Scholar 

  • Gillet JN, Meunier M (2005) General equation for size nanocharacterization of the core-shell nanoparticles by X-ray photoelectron spectroscopy. J Phys Chem B 109:8733–8737. doi:10.1021/jp044322r

    Article  CAS  Google Scholar 

  • Graja A, Farges JP (1998) Optical spectra of C60 and C70 complexes: their similarities and differences. Adv Mater Opt Electron 8:215–228. doi:10.1002/(SICI)1099-0712(1998090)8:5<215:AID-AMO338>3.0.CO;2-#

  • Guldi DM (2000) Fullerenes: three dimensional electron acceptor materials. Chem Commun 321–327. doi:10.1039/A907807J

  • Guldi DM, Prato M (2000) Excited-state properties of C60 fullerene derivatives. Acc Chem Res 33:695–703. doi:10.1021/ar990144m

    Article  CAS  Google Scholar 

  • Haruta M (2003) When gold is not noble: catalysis by nanoparticles. Chem Record 3:75–87. doi:10.1002/tcr.10053

    Article  CAS  Google Scholar 

  • Haus JW, Zhou HS, Takami S, Hirasawa M, Honma I, Komiyama H (1993) Enhanced optical properties of metal-coated nanoparticles. J Appl Phys 73:1043–1048. doi:10.1063/1.353290

    Article  CAS  Google Scholar 

  • Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 100:13549–13554. doi:10.1073/pnas.2232479100

    Article  CAS  Google Scholar 

  • Jackson JB, Halas NJ (2004) Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates. Proc Natl Acad Sci USA 101:17930–17935. doi:10.1073/pnas.0408319102

    Article  CAS  Google Scholar 

  • Ji H-X, Hu J-S, Tang Q-X, Song W-G, Wang C-R, Hu W-P, Wan L-J, Lee S-T (2007) Controllable preparation of submicrometer single-crystal C60 rod and tubes trough concentration depletion at the surfaces of seeds. J Phys Chem C 111:10498–10502. doi:10.1021/jp071912r

    Article  CAS  Google Scholar 

  • Jiang Z-J, Liu C-Y, Sun L-W (2005) Catalytic properties of silver nanoparticles supported on silica spheres. J Phys Chem B 109:1730–1735. doi:10.1021/jp046032g

    Article  CAS  Google Scholar 

  • Kasai H, Nalwa HS, Oikawa H, Okada S, Matsuda H, Minami N, Kakuta A, Ono K, Mukoh A, Nakanishi H (1992) A novel preparation method of organic microcrystals. Jpn J Appl Phys 31:L1132–L1134. doi:10.1143/JJAP.31.L1132

    Article  CAS  Google Scholar 

  • Kasai H, Okazaki S, Hanada T, Okada S, Oikawa H, Adschiri T, Arai K, Yase K, Nakanishi H (2000) Preparation of C60 microcrystals using high temperature and high pressure liquid crystallization method. Chem Lett 2000:1392–1393. doi:10.1246/cl.2000.1392

    Article  Google Scholar 

  • Klopfer M, Jain RK (2011) Plasmonic quantum dots for nonlinear optical applications. Opt Mater Exp 1:1353–1366. doi:10.1364/OME.1.001353

    Article  Google Scholar 

  • Kong J, Chapline M, Dai H (2001) Functionalized carbon nanotubes for molecular hydrogen sensors. Adv Mater 13:1384–1386. doi:10.1002/1521-4095(200109)13:18<1384:AID-ADMA1384>3.0.CO;2-8

    Google Scholar 

  • Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318:162–163. doi:10.1038/318162a0

    Article  CAS  Google Scholar 

  • Liu W, Yang X, Huang W (2006) Catalytic properties of carboxylic acid functionalized-polymer microsphere-stabilized gold metallic colloids. J Colloid Interface Sci 304:160–165. doi:10.1016/j.jcis.2006.08.040

    Article  CAS  Google Scholar 

  • Masuhara A, Tan Z, Kasai H, Nakanishi H, Oikawa H (2008) A convenient method to prepare gold-coated C60 nanocrystals. Mol Cryst Liq Cryst 492:262–267

    Article  CAS  Google Scholar 

  • Masuhara A, Tan Z, Kasai H, Nakanishi H, Oikawa H (2009) Fullerene fine crystals with unique shapes and controlled size. Jpn J Appl Phys 48:050206. doi:10.1143/JJAP.48.050206

    Article  Google Scholar 

  • Masuhara A, Tan Z, Ikeshima M, Sato T, Kasai H, Oikawa H, Nakanishi H (2012) Cyclic transformation in shape and crystal structure of C60 microcrystals. CrystEngComm 14:7787–7791. doi:10.1039/C2CE25798J

    Article  CAS  Google Scholar 

  • Matsushima Y, Nishiyabu R, Takanashi N, Haruta M, Kimura H, Kubo Y (2012) Boronate microparticles with embedded Au nanoparticles exhibit an efficient catalytic activity for the reduction of nitroaromatic compounds. J Mater Chem 22:24124–24131. doi:10.1039/C2JM34797K

    Article  CAS  Google Scholar 

  • Minami N, Kazaoui S, Ross R (1995) Electronic excited states in C60 thin films as revealed by spectroscopic measurements: luminescence excitation spectra and temperature dependence. Synth Met 70:1397–1400. doi:10.1016/0379-6779(94)02894-5

    Article  CAS  Google Scholar 

  • Nakamura E, Isobe H (2003) Functionalized fullerenes in water. The first 10 years of their chemistry, biology, and nanoscience. Acc Chem Res 36:807–815. doi:10.1021/ar030027y

    Article  CAS  Google Scholar 

  • Nalwa HS, Kasai H, Okada S, Oikawa H, Matsuda H, Kakuta A, Mukoh A, Nakanishi H (1993) Fabrication of organic nanocrystals for electronics and photonics. Adv Mater 5:758–760. doi:10.1002/adma.19930051018

    Article  CAS  Google Scholar 

  • Neeves AE, Birnboin MH (1989) Composite structures for the enhancement of nonlinear-optical susceptibility. J Opt Soc Am B 6:787–796. doi:10.1364/JOSAB.6.000787

    Article  CAS  Google Scholar 

  • Norman TJ, Grant CD, Magana D, Zhang JZ, Liu J, Cao D, Bridges F, Van Buuren A (2002) Near infrared optical absorption of gold nanoparticle aggregates. J Phys Chem B 106:7005–7012. doi:10.1021/jp0204197

    Article  CAS  Google Scholar 

  • Oldenburg SJ, Hale GD, Jackson JB, Halas NJ (1999) Light scattering from dipole and quadrupole nanoshell antennas. Appl Phys Lett 75:1063–1065. doi:10.1063/1.124597

    Article  CAS  Google Scholar 

  • Onodera T, Tan Z, Masuhara A, Oikawa H, Kasai H, Nakanishi H, Sekiguchi T (2006) Silver-coated polydiacetylene nanocrystals fabricated using surfactants as binder. Jpn J Appl Phys 45:379–383. doi:10.1143/JJAP.45.379

    Article  CAS  Google Scholar 

  • Palstra TTM, Zhou O, Iwasa Y, Sulewski PE, Fleming RM, Zegarski BR (1995) Superconductivity at 40 K in cesium doped C60. Solid State Commun 93:327–330. doi:10.1016/0038-1098(94)00787-X

    Article  CAS  Google Scholar 

  • Pol VG, Gedankan A, Caldenron-Moreno J (2003) Deposition of gold nanoparticles on silica spheres: a sonochemical approach. Chem Mater 15:1111–1118. doi:10.1021/cm021013+

    Article  CAS  Google Scholar 

  • Radloff C, Vaia RA, Brunton J, Bouwer GT, Ward VK (2005) Metal nanoshell assembly on a virus bioscaffold. Nano Lett 5:1187–1191. doi:10.1021/nl050658g

    Article  CAS  Google Scholar 

  • Saito S, Oshiyama A (1991) Cohesive mechanism and energy bands of solid C60. Phys Rev Lett 66:2637–2640. doi:10.1103/PhysRevLett.66.2637

    Article  CAS  Google Scholar 

  • Shen Y, Skirtach AG, Seki T, Yagai S, Li H, Möhwald H, Nakanishi T (2010) Assembly of fullerene-carbon nanotubes: temperature indicator for photothermal conversion. J Am Chem Soc 132:8566–8568. doi:10.1021/ja1026024

    Article  CAS  Google Scholar 

  • Shi W, Sahoo Y, Swihart MT, Prasad PN (2005) Gold nanoshells on polystyrene cores for control of surface plasmon resonance. Langmuir 21:1610–1617. doi:10.1021/la047628y

    Article  CAS  Google Scholar 

  • Shih S-M, Su W-F, Lin Y-J, Wu C-S, Chen C-D (2002) Two-dimensional arrays of self-assembled gold and sulfur-containing fullerene nanoparticles. Langmuir 18:3325–3332. doi:10.1021/la011667h

    Article  Google Scholar 

  • Shon Y-S, Choo H (2002) [60]Fullerene-linked gold nanoparticles: synthesis and layer-by-layer growth on a solid surface. Chem Commun 21:2560–2561. doi:10.1039/B207246G

    Article  Google Scholar 

  • Skokan EV, Arkhangelskii IV, Izotov DE, Chelovskaya NV, Nikulin MM, Velikodnyi YA (2005) Stability of hexagonal modification of fullerite C60. Carbon 43:803–808. doi:10.1016/j.carbon.2004.11.007

    Article  CAS  Google Scholar 

  • Stratakis M, Garcia H (2012) Catalysis by supported gold nanoparticles: beyond aerobic oxidative processes. Chem Rev 112:4469–4506. doi:10.1021/cr3000785

    Article  CAS  Google Scholar 

  • Sudeep PK, Ipe BI, Thomas KG, George MV (2002) Fullerene-functionalized gold nanoparticles. A self-assembled photoactive antenna-metal nanocore assembly. Nano Lett 2:29–35. doi:10.1021/nl010073w

    Article  CAS  Google Scholar 

  • Sun N, Wang Y, Song Y, Guo Z, Dai L, Zhu D (2001) Novel [60]fullerene–silver nanocomposite with large optical limiting effect. Chem Phys Lett 344:277–282. doi:10.1016/S0009-2614(01)00815-6

    Article  CAS  Google Scholar 

  • Tan Z (2008) Morphology-controlled fullerene microcrystals and their hybridization. PhD thesis, Tohoku University, Sendai, Japan

  • Tan Z, Masuhara A, Kasai H, Nakanishi H, Oikawa H (2008) Multibranched C60 micro/nanocrystals fabricated by reprecipitation method. Jpn J Appl Phys 47:1426–1428. doi:10.1143/JJAP.47.1426

    Article  CAS  Google Scholar 

  • Thompson BC, Fréchet JMJ (2007) Polymer-fullerene composite solar cells. Angew Chem Int Ed 47:58–77. doi:10.1002/anie.200702506

    Article  Google Scholar 

  • Vasák V, Kopecky J (1967) On the role of pyridoxamine in the mechanism of the toxic action of carbon disulphide. In: Brieger H, Teisincer J (eds) Toxicology of carbon disulphide. An international symposium. Elsevier, Amsterdam, pp 35–41

    Google Scholar 

  • Wang L, Liu B, Liu D, Yao M, Hou Y, Yu S, Cui T, Li D, Zou G, Iwasiewicz A, Sundqvist B (2006) Synthesis o thin, rectangular C60 nanorods using m-xylene as a shape controller. Adv Mater 18:1883–1888. doi:10.1002/adma.200502738

    Article  CAS  Google Scholar 

  • Westcott SL, Oldenburg SJ, Lee TR, Halas NJ (1998) Formation and adsorption of clusters of gold nanoparticles onto functionalized silica nanoparticle surfaces. Langmuir 14:5396–5401. doi:10.1021/la980380q

    Article  CAS  Google Scholar 

  • Zhang P, Li J, Liu D, Qin Y, Guo Z-X, Zhu D (2004) The self-assembly of gold nanoparticles on fullerene nanospheres. Langmuir 20:1466–1472. doi:10.1021/la035800c

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenquan Tan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 234 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, Z., Masuhara, A., Ohara, S. et al. Facile deposition of gold nanoparticles on C60 microcrystals with unique shapes. J Nanopart Res 15, 2029 (2013). https://doi.org/10.1007/s11051-013-2029-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-2029-z

Keywords

Navigation