Skip to main content

Advertisement

Log in

Nanotechnology and clean energy: sustainable utilization and supply of critical materials

  • Perspectives
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Advances in nanoscale science and engineering suggest that many of the current problems involving the sustainable utilization and supply of critical materials in clean and renewable energy technologies could be addressed using (i) nanostructured materials with enhanced electronic, optical, magnetic and catalytic properties and (ii) nanotechnology-based separation materials and systems that can recover critical materials from non-traditional sources including mine tailings, industrial wastewater and electronic wastes with minimum environmental impact. This article discusses the utilization of nanotechnology to improve or achieve materials sustainability for energy generation, conversion and storage. We highlight recent advances and discuss opportunities of utilizing nanotechnology to address materials sustainability for clean and renewable energy technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aricò AS, Bruce P, Scrosati B, Tarascon JM, van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mat 4:366–377

    Article  Google Scholar 

  • ARPA-E (Advanced Research Projects Agency-Energy) (2011) Rare earth alternatives in critical technologies (REACT). http://arpa-e.energy.gov/?q=arpa-e-programs/react

  • Ba C, Langer J, Economy J (2009) Chemical modification of P84 copolyimide membranes by polyethylenimine for nanofiltration. J Membr Sci 327:49–58

    Article  CAS  Google Scholar 

  • Bian Z, Mia X, Lei S, Chen SE, Wang W, Stuthers S (2012) The challenges of reusing mining and mineral-processing wastes. Science 337:702–703

    Article  CAS  Google Scholar 

  • Brinker JC, Ginger D (2011) Nanotechnology for sustainability: energy conversion, storage, and conservation. In: Roco MC, Mirkin MC, Hersham M (eds) Nanotechnology research directions for societal needs in 2020: retrospective and outlook. Springer, New York, pp 261–303

    Chapter  Google Scholar 

  • Callahan DM, Munday JN, Atwater HA (2012) Solar cell light trapping beyond the ray optic limit. Nano Lett 12:214–218

    Article  CAS  Google Scholar 

  • Cavaliere S, Subianto S, Savych I, Jones DJ, Rozière J (2011) Electrospinning: designed architectures for energy conversion and storage devices. Energy Environ Sci 4:4761–4785

    Article  CAS  Google Scholar 

  • Chen DP, Yu CJ, Chang C-Y, Wan Y, Frechet JMJ, Goddard WA, Diallo MS (2012) Branched polymeric media: perchlorate-selective resins from hyperbranched polyethyleneimine. Environ Sci Technol 46:10718–10726

    Article  CAS  Google Scholar 

  • Cheng S, Oatley DL, Williams PM, Wright CJ (2011) Positively charged nanofiltration membranes: review of current fabrication methods and introduction of a novel approach. Adv Colloid Interface Sci 164:12–20

    Article  CAS  Google Scholar 

  • Cohen SM, Petoud S, Raymond KN (2001) Synthesis and metal binding properties of salicylate-, catecholate-, and hydroxypyridinonate-functionalized dendrimers. Chemistry-A 7:272–279

    Article  CAS  Google Scholar 

  • Deceglie MG, Ferry VE, Alivisaos AP, Atwater HA (2012) Design of nanostructured solar cells using coupled optical and electrical modeling. Nano Lett 12:2894–2900

    Article  CAS  Google Scholar 

  • Déon S, Escoda A, Fievet P (2011) A transport model considering charge adsorption inside pores to describe salts rejection by nanofiltration membranes. Chem Eng Sci 66:2823–2832

    Article  Google Scholar 

  • Diallo MS (2008) Water treatment by dendrimer enhanced filtration. US Patent 7,470,369

  • Diallo MS, Brinker JC (2011) Nanotechnology for sustainability: environment, water, food, minerals and climate. In: Roco MC, Mirkin MC, Hersham M (eds) Nanotechnology research directions for societal needs in 2020: retrospective and outlook. Science policy reports. Springer, New York, pp 221–259

    Chapter  Google Scholar 

  • Diallo MS et al. (2013) Implications: convergence of knowledge and technology for a sustainable society. In: Roco MC, Bainbridge WS, Tonn B, Whitesides G (eds) Convergence of knowledge, technology, and society: beyond convergence of nano-bio-info-cognitive technologies. Science Policy Reports, Springer, Dordrecht

    Google Scholar 

  • Diallo MS, Chritie S, Swaminathan P, Balogh L, Shi X, Um W, Papelis L, Goddard WA, Johnson JH (2004) Dendritic chelating agents 1. Cu(II) binding to ethylene diamine core poly(amidoamine) dendrimers in aqueous solutions. Langmuir 20:2640–2651

    Article  CAS  Google Scholar 

  • Diallo MS, Chritie S, Swaminathan P, Johnson JH, Goddard WA (2005) Dendrimer enhanced ultrafiltration. 1. Recovery of Cu(II) from aqueous solutions using Gx–NH2 PAMAM dendrimers with ethylene diamine ore. Environ Sci Technol 39:1366–1377

    Article  CAS  Google Scholar 

  • Diallo MS, Wondwossen A, Johnson JH, Goddard WA (2008) Dendritic chelating agents 2. U(VI) binding to poly(amidoamine) and poly(propyleneimine) dendrimers in aqueous solutions. Environ Sci Technol 42:1572–1579

    Article  CAS  Google Scholar 

  • DOE (Department of Energy) (2006) Basic research needs for advanced nuclear energy systems. http://science.energy.gov/bes/news-and-resources/reports/abstracts/#ANES

  • DOE (Department of Energy) (2011) Critical materials strategy. http://energy.gov/pi/office-policy-and-international-affairs/downloads/2010-critical-materialsstrategy

  • Dvornic PR, Uppuluri S (2002) Rheology and solution properties of dendrimers. In: Fréchet JMJ, Tomalia DA (eds) Dendrimers and other dendritic polymers. Wiley, New York

    Google Scholar 

  • Escoda A, Lanteri Y, Fievet P, Déon S, Szymczyk A (2010) Determining the dielectric constant inside pores on nanofiltration membranes from membrane potential measurements. Langmuir 26:14628–14635

    Article  CAS  Google Scholar 

  • Fréchet JMJ, Tomalia DA (2002) Dendrimers and other dendritic polymers. Wiley, New York

    Google Scholar 

  • Fromer N, Eggert RG, Lifton J (2011) Critical materials for sustainable energy applications. Resnick Institute Report, California Institute of Technology. http://resnick.caltech.edu/programs/critical-materials/index.html

  • Gloe K, Stephan H, Grotjahn M (2003) Where is the anion extraction going? Chem Eng Technol 26:1107–1117

    Article  CAS  Google Scholar 

  • Gomes CP, Almeida MF, Loureiro JM (2001) Gold recovery with ion exchange used resins. Sep Purif Technol 24:35–57

    Article  CAS  Google Scholar 

  • Grandidier J, Callahan DM, Munday JN, Atwater HA (2012) Gallium arsenide solar cell absorption enhancement using whispering gallery modes of dielectric nanospheres. IEEE J Photovolt 2:123–128

    Article  Google Scholar 

  • Guo Q, Ford GM, Yang WC, Walker BC, Stach EA, Hillhouse HW, Agrawal R (2010) Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals. J Am Chem Soc 132:17384–17386

    Article  CAS  Google Scholar 

  • Gur I, Fromer NA, Geier ML, Alivisatos AP (2005) Air-stable all inorganic nanocrystal solar cells processed from solution. Science 310:462–465

    Article  CAS  Google Scholar 

  • Harland CE (1994) Ion-exchange: theory and practice, 2nd edn. Royal Society of Chemistry, London

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2007) Solomon, S, Quin, D, Manning, M, Chen, Z, Marquis, M, Averyt, KB, Tignor, M, Miller, HL (eds) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge

  • Ji Y, An Q, Zhao Q, Chen H, Gao C (2011) Preparation of novel positively charged copolymer membranes for nanofiltration. J Membr Sci 376:254–265

    Article  CAS  Google Scholar 

  • Johnson J, Harper EM, Lifset R, Graedel TE (2007) Dining at the periodic table: metals concentration as they relate to recycling. Environ Sci Technol 41:1759–1765

    Article  CAS  Google Scholar 

  • Kneller EF, Hawig R (1991) The exchange-spring magnet—a new material principle for permanent-magnets. IEEE Trans Magn 27:3588–3600

    Article  CAS  Google Scholar 

  • Krämer M, Stumbé JF, Grimm G, Kaufmann B, Krüger U, Webe M, Haag R (2004) ChemBioChem 5:1081–1087

    Article  Google Scholar 

  • Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci 103:15729–15735

    Article  CAS  Google Scholar 

  • Liu XQ, He SH, Qiq JM, Wang JP (2011) Nanocomposite exchange-spring magnet synthesized by gas phase method: from isotropic to anisotropic. Appl Phys Lett 98:222507

    Article  Google Scholar 

  • Ma W, Luther JM, Zhend HM, Wu Y, Alivisatos AP (2009) Photovoltaic devices employing ternary PbS x Se1−x nanocrystals. Nano Lett 9:1699–1703

    Article  CAS  Google Scholar 

  • Maiti PK, Lin T, Cagin ST, Goddard WA (2005) The effect of solvent and pH on the structure of PAMAM dendrimers. Macromolecules 38:979–991

    Article  CAS  Google Scholar 

  • Martell AE, Hancock RD (1996) Metal complexes in aqueous solutions. Plenum Press, New York

    Book  Google Scholar 

  • Matejka Z, Parschova H, Ruszova P et al (2004) Selective uptake and separation of oxoanions of molybdenum, vanadium, tungsten, and germanium by synthetic sorbents having polyol moieties and polysaccharide-based biosorbents. In: Moyer BA, Singh P (eds) Fundamentals and applications of anion separations. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  • Mckone J, Sadtler B, Werlang C, Lewis NS, Gray HB (2013) Ni–Mo nanopowders for efficient electrochemical hydrogen evolution. ACS Catal 3:166–169

    Article  CAS  Google Scholar 

  • Mishra H, Yu, CJ, Chen DP, Dalleska NF, Hoffmann MR, Goddard, WA, Diallo MS (2012) Branched polymeric media: boron-chelating resins from hyperbranched polyethyleneimine. Environ Sci Technol 46:8998–9004

    Google Scholar 

  • Moss R, Tzimas E, Kara H, Willis P, Kooroshy J (2011) Critical metals in strategic energy technologies. Publications Office of the European Union. http://publications.jrc.ec.europa.eu/repository/handle/111111111/22726

  • Moyer BA, Bonnesen PV (1997) Physical factors in anion separations. In: Bianchi A, Bowman-James K, García-Espana E (eds) Supramolecular chemistry of anions. VCH, New York, pp 1–44

    Google Scholar 

  • Nakamuro E, Sato K (2011) Managing the scarcity of chemical elements. Nat Mat 10:158–161

    Article  Google Scholar 

  • NRC (National Research Council) (2008) Minerals, critical minerals, and the U.S. economy. ISBN: 0-309-11283

  • O’Donnell KP, Maur MAD, Di Carlo A, Lorenz K (2012) It’s not easy being green: strategies for all-nitrides, all colour solid state lighting. Phys Stat Solidi 6:49–52

    Google Scholar 

  • Park S-J, Cheedrala RK, Diallo MS, Kim CH, Kim IS, Goddard WA (2012) Nanofiltration membranes based on polyvinyldene fluoride nanofibrous scaffolds and crosslinked polyethyleimine networks. J Nanopart Res 14:884

    Article  Google Scholar 

  • Raghavan P, Lim DH, Ahn JH et al (2012) Electrospun polymer nanofibers: the booming cutting edge technology. React Funct Polym 72:915–930

    Article  CAS  Google Scholar 

  • Reck BK, Graedel TE (2012) Challenges in metal recycling. Science 337:690–695

    Article  CAS  Google Scholar 

  • Schäefer A, Fane AG, Waite TD (2005) Nanofiltration: principles and applications. Elsevier, New York

    Google Scholar 

  • Scott RWJ, Wilson OM, Crooks RM (2005) Synthesis, characterization and applications of dendrimer-encapsulated manoparticles. J Phys Chem B 109:692–704

    Article  CAS  Google Scholar 

  • Seiler M (2006) Hyperbranched polymers: phase behavior and new applications in the field of chemical engineering. Fluid Phase Equilib 241:155–174

    Article  CAS  Google Scholar 

  • Shen Y, Huang MQ, Lee D, Bauser S, Higgins A, Chen C, Liu S (2006) Hybrid nanograin rare earth magnets with improved thermal stability. J Appl Phys 99:08B520

    Google Scholar 

  • Soldenhoff K, McCulloh J, Manis A, Macintosh P (2005) Nanofiltration in metal and acid recovery. In: Schäefer A, Fane AG, Waite TD (eds) Nanofiltration: principles and applications. Elsevier, New York, pp 459–477

    Google Scholar 

  • Strathmann H (2011) Introduction to membrane science and technology. Wiley-VCH, Weinheim

    Google Scholar 

  • Stricker N (2013) Reverse mining: scientists extract rare earth materials from consumer products. https://inlportal.inl.gov/portal/server.pt/community/newsroom/257/feature_story_details/1269?featurestory=DA_606590)

  • Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters, 3rd edn. Wiley, New York

    Google Scholar 

  • Suntivich J, May K, Gasteiger H, Goodenough J, Shao-Horn Y (2011) A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334:1383–1385

    Article  CAS  Google Scholar 

  • Tomalia DA, Diallo MS (2012) Dendrimers: synthetic science to controlled organic nanostructures and a window to a new systematic framework for unifying nanoscience. In: Goddard WA, Brenner DW, Lyshevski SE, Iafrate GJ (eds) Handbook of nanoscience, engineering and technology, 3rd edn. CRC Press, Boca Raton, pp 413–467

    Chapter  Google Scholar 

  • Valdivia CE, Chow S, Fafard S, et al. (2010) Measurement of high efficiency 1 cm2 AlGaInP/InGaAs/Ge solar cells with embedded InAs quantum dots at up to 1000 suns continuous concentration. In: Proceedings of the 35th IEEE photovoltaic specialists conference (PVSC), pp 1253–1258

  • Vankelecom IFJ, De Smet K, Gevers LEM, Jacobs PA (2005) Nanofiltration membrane materials and preparation. In: Schäefer A, Fane AG, Waite TD (eds) Nanofiltration: principles and applications. Elsevier, New York, pp 34–65

    Google Scholar 

  • Vezzani D, Bandini S (2002) Donnan equilibrium and dielectric exclusion for characterization of nanofiltration membranes. Desal 149:477–483

    Article  CAS  Google Scholar 

  • Vrubel H, Merki D, Hu X (2012) Hydrogen evolution catalyzed by MoS3 and MoS2 particles. Energy Environ Sci 5:6136–6144

    Article  CAS  Google Scholar 

  • Zhang Y, Xie C, Su H et al (2011) Employing heavy metal-free colloidal quantum dots in solution-processed white light-emitting diodes. Nano Lett 11:329–332

    Article  CAS  Google Scholar 

  • Zhao T, Zheng Y, Poly J, Wang W (2013) Controlled multi-vinyl monomer homopolymerization through vinyl oligomer combination as a universal approach to hyperbranched architectures. Nat Commun 4:1873. (http://www.nature.com/ncomms/journal/v4/n5/full/ncomms2887.html)

    Google Scholar 

Download references

Acknowledgments

Neil A. Fromer thanks the Resnick Sustainability Institute, as well as the LMI-EFRC, Rod Eggert, and Jack Lifton and the other attendees of the Resnick Institute critical materials workshop for helpful discussions. Mamadou Diallo thanks the EEWS Initiative (Grant # NT080607C0209721), the National Research Foundation of Korea (NRF) [MEST grant No. 2012M1A2A2026588] and the National Science Foundation (NSF) of United States [CBET grants 0948485 and 0506951] for funding his research on sustainable chemistry, engineering and materials (SusChEM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamadou S. Diallo.

Additional information

Special Issue Editors: Mamadou Diallo, Neil Fromer, Myung S. Jhon

This article is part of the Topical Collection on Nanotechnology for Sustainable Development

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fromer, N.A., Diallo, M.S. Nanotechnology and clean energy: sustainable utilization and supply of critical materials. J Nanopart Res 15, 2011 (2013). https://doi.org/10.1007/s11051-013-2011-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-2011-9

Keywords

Navigation