Cellular uptake of fluorophore-labeled glyco-DNA–gold nanoparticles

  • Katrin G. Witten
  • Julie Ruff
  • Anne Mohr
  • Dieter Görtz
  • Tobias Recker
  • Natalie Rinis
  • Claudia Rech
  • Lothar Elling
  • Gerhard Müller-Newen
  • Ulrich SimonEmail author
Research Paper


DNA-functionalized gold nanoparticles (AuNP–DNA) were hybridized with complementary di-N-acetyllactosamine-(di-LacNAc, [3Gal(β1-4)GlcNAc(β1-]2)-modified oligonucleotides to form glycol-functionalized particles, AuNP–DNA–di-LacNAc. While AuNP–DNA are known to be taken up by cells via scavenger receptors, glycol-functionalized particles have shown to be taken up via asialoglycoprotein receptors (ASGP-R). In this work, the interaction of these new particles with HepG2 cells was analyzed, which express scavenger receptors class B type I (SR-BI) and ASGP-R. To study the contribution of these receptors as potential mediators for cellular uptake, receptor-blocking experiments were performed with d-lactose, a ligand for ASGP-R, Fucoidan, a putative ligand for SR-BI, and a SR-BI blocking antibody. Labeling with Cy5-modified DNA ligands enabled us to monitor the particle uptake by confocal fluorescence microscopy and flow cytometry, in order to discriminate the two putative pathways by competitive binding studies. While SR-BI-antibody and d-lactose had no inhibiting effects on particle uptake Fucoidan led to a complete inhibition. Thus, a receptor-mediated uptake by the two receptors studied could not be proven and therefore other uptake mechanisms have to be considered.


Gold nanoparticles DNA Carbohydrates Cellular uptake Hepatocytes 



We thank Prof. E. Weinhold and Dr. S. Charrak (Institute of Organic Chemistry, RWTH Aachen University) for HPLC, Dr. W. Bettray (Institute of Organic Chemistry, RWTH Aachen University) for ESI–MS, Dr. Yu Pan (Biomedical Engineering, Biointerface Laboratory RWTH Aachen University) for Nanodrop analytics and the Immunohistochemistry, and Confocal Laser Scanning Microscopy Facility, a core facility of the IZKF within the Faculty of Medicine, RWTH Aachen University. We are grateful to Liangliang Hao for valuable comments on this manuscript. This research is a part of the project “ForSaTum”, co-funded by the European Union (European Regional Development Fund—Investing in your future) and the German federal state North Rhine-Westphalia (NRW). Furthermore, the work was financially supported by the Deutsche Forschungsgemeinschaft Graduate School “Biointerface” (No. 1035) and the Excellence Initiative of the German federal and state Governments (ERS Seed Fund Project).

Supplementary material

11051_2013_1992_MOESM1_ESM.docx (652 kb)
Supplementary material 1 (DOCX 652 kb)


  1. Acuna GP, Bucher M, Stein IH, Steinhauer C, Kuzyk A, Holzmeister P, Schreiber R, Moroz A, Stefani FD, Liedl T, Simmel FC, Tinnefeld P (2012) Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami. ACS Nano 6:3189–3195CrossRefGoogle Scholar
  2. Arnáiz B, Martínez-Ávila O, Falcon-Perez JM, Penadés S (2012) Cellular uptake of gold nanoparticles bearing HIV gp120 oligomannosides. Bioconjug Chem 23:814–825CrossRefGoogle Scholar
  3. Bergen JM, von Recum HA, Goodman TT, Massay AP, Pun SH (2006) Gold nanoparticles as a versatile platform for optimizing physicochemical parameters for targeted drug delivery. Macromol Biosci 6:506–516CrossRefGoogle Scholar
  4. Biessen EA, Vietsch H, Rump ET, Fluiter K, Kuiper J, Bijsterbosch MK, von Berkel TJC (1999) Targeted delivery of oligodeoxynucleotides to parenchymal liver cells in vivo. Biochem J 340:783–792CrossRefGoogle Scholar
  5. Dong P, Xie T, Zhou X, Hu W, Chen Y, Duan Y, Li X, Han J (2011) Induction of macrophage scavenger receptor type BI expression by tamoxifen and 4-hydroxytamoxifen. Atherosclerosis 218:435–442. doi: 10.1016/j.atherosclerosis.2011.06.048 CrossRefGoogle Scholar
  6. Drickamer K, Taylor ME (1993) Biology of animal lectins. Annu Rev Cell Biol 9:237–264CrossRefGoogle Scholar
  7. Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci 241:20–22CrossRefGoogle Scholar
  8. Gallo J, Genicio N, Penadés S (2012) Uptake and intracellular fate of fluorescent-magnetic glyco-nanoparticles. Adv Healthcare Mater 1:302–307CrossRefGoogle Scholar
  9. Giljohann DA, Seferos DS, Patel PC, Millstone JE, Rosi NL, Mirkin CA (2007) Oligonucleotide loading determines cellular uptake of DNA-modified gold nanoparticles. Nano Lett 7:3818–3821CrossRefGoogle Scholar
  10. Giljohann DA, Seferos DS, Prigodich AE, Patel PC, Mirkin CA (2009) Gene regulation with polyvalent siRNA-nanoparticle conjugates. J Am Chem Soc 131:2072–2073CrossRefGoogle Scholar
  11. Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed Engl 49:3280–3294CrossRefGoogle Scholar
  12. Hangeland JJ, Flesher JE, Deamond SF, Lee YC, Ts’O PO, Frost JJ (1997) Tissue distribution and metabolism of the [32P]-labeled oligodeoxynucleoside methylphosphonate-neoglycopeptide conjugate, [YEE(ah-GalNAc)3]-SMCC-AET-pUmpT7, in the mouse. Antisense Nucleic Acid Drug Dev 7:141–149CrossRefGoogle Scholar
  13. He H, MacKinnon KM, Genovese KJ, Nerren JR, Swaggerty CL, Nisbet DJ, Kogut MH (2009) Chicken scavenger receptors and their ligand-induced cellular immune responses. Mol Immunol 46:2218–2225CrossRefGoogle Scholar
  14. Huang G, Diakur J, Xu Z, Wiebe LI (2008) Asialoglycoprotein receptor-targeted superparamagnetic iron oxide nanoparticles. Int J Pharm 360:197–203CrossRefGoogle Scholar
  15. Hurst SJ, Lytton-Jean AKR, Mirkin CA (2006) Maximizing DNA loading on a range of gold nanoparticle sizes. Anal Chem 78:8313–8318CrossRefGoogle Scholar
  16. Husemann J, Loike JD, Anankov R, Febbraio M, Silverstein SC (2002) Scavenger receptors in neurobiology and neuropathology: their role on microglia and other cells of the nervous system. Glia 40:195–205CrossRefGoogle Scholar
  17. Kanaras AG, Wang Z, Bates AD, Cosstick R, Brust M (2003) Towards multistep nanostructure synthesis: programmed enzymatic self-assembly of DNA/gold systems. Angew Chem Int Ed 42:191–194CrossRefGoogle Scholar
  18. Kikkeri R, Lepenies B, Adibekian A, Laurino P, Seeberger PH (2009) In vitro imaging and in vivo liver targeting with carbohydrate capped quantum dots. J Am Chem Soc 131:2110–2112CrossRefGoogle Scholar
  19. Kim CK, Kalluru RR, Singh JP, Fortner A, Griffin J, Darbha GK, Ray PC (2006) Gold-nanoparticle-based miniaturized laser-induced fluorescence probe for specific DNA hybridization detection: studies on size-dependent optical properties. Nanotechnology 17:3085–3093CrossRefGoogle Scholar
  20. Lazarides A, Schatz G (2000) DNA-linked metal nanosphere materials: structural basis for the optical properties. J Phys Chem B 104:460–467CrossRefGoogle Scholar
  21. Lee RT, Lin P, Lee YC (1984) New synthetic cluster ligands for galactose/N-acetylgalactosamine-specific lectin of mammalian liver. Biochemistry 23:4255–4261CrossRefGoogle Scholar
  22. Lee J-S, Han MS, Mirkin CA (2007) Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew Chem Int Ed Engl 46:4093–4096CrossRefGoogle Scholar
  23. Li B, Lu F, Wei X, Zhao R (2008) Fucoidan: structure and bioactivity. Molecules 13:1671–1695CrossRefGoogle Scholar
  24. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609CrossRefGoogle Scholar
  25. Murphy RF, Powers S, Cantor CR (1984) Endosome pH measured in single cells by dual fluorescence flow cytometry: rapid acidification of insulin to pH 6. J Cell Biol 98:1757–1762CrossRefGoogle Scholar
  26. Nitin N, Javier DJ, Richards-Kortum R (2007) Oligonucleotide-coated metallic nanoparticles as a flexible platform for molecular imaging agents. Bioconjug Chem 18:2090–2096CrossRefGoogle Scholar
  27. Patel PC, Giljohann DA, Daniel WL, Zheng AE, Prigodich AE, Mirkin CA (2010) Scavenger receptors mediate cellular uptake of polyvalent oligonucleotide-functionalized gold nanoparticles. Bioconjug Chem 21:2250–2256CrossRefGoogle Scholar
  28. Pathak A, Vyas SP, Gupta KC (2008) Nano-vectors for efficient liver specific gene transfer. Int J Nanomed 3:31–49CrossRefGoogle Scholar
  29. Rech C, Rosencrantz RR, Křenek K, Pelantová H, Bojarová, Römer CE, Hanisch F-G, Křen V, Elling L (2011) Combinatorial one-pot synthesis of poly-N-acetyllactosamine oligosaccharides with leloir-glycosyltransferases. Adv Synth Catal 353:2492–2500CrossRefGoogle Scholar
  30. Rhainds D, Falstrault L, Tremblay C, Brissette L (1999) Uptake and fate of class B scavenger receptor ligands in HepG2 cells. Eur J Biochem 261:227–235CrossRefGoogle Scholar
  31. Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562CrossRefGoogle Scholar
  32. Rosi NL, Giljohann DA, Thaxton CS, Lytton-Jean AKR, Han MS, Mirkin CA (2006) Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312:1027–1030CrossRefGoogle Scholar
  33. Rybak SL, Murphy RF (1998) Primary cell cultures from murine kidney and heart differ in endosomal pH. J Cell Physiol 176:216–222CrossRefGoogle Scholar
  34. Sauerzapfe B, Křenek K, Schmiedel J, Wakarchuk WW, Pelantová, Křen V, Elling L (2009) Chemo-enzymatic synthesis of poly-N-acetyllactosamine (poly-LacNAc) structures and their characterization for CGL2-galectin-mediated binding of ECM glycoproteins to biomaterial surfaces. Glycoconj J 26:141–159CrossRefGoogle Scholar
  35. Seferos DS, Prigodich AE, Giljohann DA, Patel PC, Mirkin CA (2009) Polyvalent DNA nanoparticle conjugates stabilize nucleic acids. Nano Lett 9:308–311CrossRefGoogle Scholar
  36. Song X, Fischer P, Chen X, Burton C, Wang J (2009) An apoA-I mimetic peptide facilitates off-loading cholesterol from HDL to liver cells through scavenger receptor BI. Int J Biol Sci 5:637–646CrossRefGoogle Scholar
  37. Spiess M (1990) The asialoglycoprotein receptor: a model for endocytic transport receptors. Biochemistry 29:10009–10018CrossRefGoogle Scholar
  38. Stockert RJ (1995) The asialoglycoprotein receptor: relationships between structure, function, and expression. Physiol Rev 75:591–609Google Scholar
  39. Su G, Zhou H, Mu Q, Zhang Y, Li L, Jiao P, Jiang G, Yan B (2012) Effective surface charge density determines the electrostatic attraction between nanoparticles and cells. J Phys Chem C 116:4993–4998CrossRefGoogle Scholar
  40. Takae S, Akiyama Y, Otsuka H, Nakamura T, Nagasaki Y, Kataoka K (2005) Ligand density effect on biorecognition by PEGylated gold nanoparticles: regulated interaction of RCA120 lectin with lactose installed to the distal end of tethered PEG strands on gold surface. Biomacromolecules 6:818–824CrossRefGoogle Scholar
  41. Tian X, Pai J, Baek K-H, Ko S-K, Shin I (2011) Fluorophore-labeled, peptide-based glycoclusters: synthesis, binding properties for lectins, and detection of carbohydrate-binding proteins in cells. Chem Asian J 6:2107–2113CrossRefGoogle Scholar
  42. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75CrossRefGoogle Scholar
  43. Westerlind U, Westman J, Törnquist E, Smith CIE, Oscarson S, Lahmann M, Norberg T (2004) Ligands of the asialoglycoprotein receptor for targeted gene delivery, Part 1: synthesis of and binding studies with biotinylated cluster glycosides containing N-acetylgalactosamine. Glycoconj J 21:227–241CrossRefGoogle Scholar
  44. Witten KG (2012) Glyko-DNA-funktionalisierte goldnanopartikel: synthese und wechselwirkung mit lektinen und zellen. PhD Thesis RWTH, Aachen UniversityGoogle Scholar
  45. Witten KG, Bretschneider JC, Eckert T, Richtering W, Simon U (2008) Assembly of DNA-functionalized gold nanoparticles studied by UV/Vis-spectroscopy and dynamic light scattering. Phys Chem Chem Phys 10:1870–1875CrossRefGoogle Scholar
  46. Witten KG, Rech C, Eckert T, Charrak S, Richtering W, Elling L, Simon U (2011) Glyco-DNA–gold nanoparticles: lectin-mediated assembly and dual-stimuli response. Small 7:1954–1960CrossRefGoogle Scholar
  47. Yan H, Tram K (2007) Glycotargeting to improve cellular delivery efficiency of nucleic acids. Glycoconj J 24:107–123CrossRefGoogle Scholar
  48. Yang Y, Zhang Z, Chen L, Gu W, Li Y (2010) Galactosylated poly(2-(2-aminoethyoxy)ethoxy)phosphazene/DNA complex nanoparticles: in vitro and in vivo evaluation for gene delivery. Biomacromolecules 11:927–933CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Katrin G. Witten
    • 1
  • Julie Ruff
    • 1
  • Anne Mohr
    • 2
  • Dieter Görtz
    • 2
  • Tobias Recker
    • 2
  • Natalie Rinis
    • 2
  • Claudia Rech
    • 3
  • Lothar Elling
    • 3
  • Gerhard Müller-Newen
    • 2
  • Ulrich Simon
    • 1
    Email author
  1. 1.Institute of Inorganic Chemistry and JARA - Fundamentals of Future Information TechnologyRWTH Aachen UniversityAachenGermany
  2. 2.Institute of Biochemistry and Molecular Biology, University Hospital AachenRWTH Aachen University52074 AachenGermany
  3. 3.Laboratory for Biomaterials, Institute of Biotechnology and Helmholtz-Institute for Biomedical EngineeringRWTH Aachen UniversityAachenGermany

Personalised recommendations