The transition from spark to arc discharge and its implications with respect to nanoparticle production

Abstract

The synthesis of nanoparticles by means of electrical discharges between two electrodes in an inert gas at atmospheric pressure, as driven by a constant current ranging from a few milliamps to tens of amps, is investigated in this work. An extensive series of experiments are conducted with copper as a consumable electrode and pure nitrogen as the inert gas. Three different DC power supplies are used to drive electrical discharges for the entire operating current range. Then, three electrical discharge regimes (spark, glow, and arc) with distinct voltage–current characteristics and plasma emission spectra are recognized. For the first time, nanoparticles are synthesized by evaporation of an electrode by atmospheric pressure inert gas DC glow discharge of a few millimeters in size. The discharge regimes are characterized in terms of the mass output rate and the particle size distribution of the copper aerosols by means of online (tapered element oscillating microbalance, TEOM; and scanning mobility particle sizer, SPMS) and offline (gravimetric analysis; small and wide angle X-ray scattering, SWAXS; and transmission electron microscopy, TEM) techniques. The electrical power delivered to the electrode gap and the gas flow rate are two major parameters determining the aerosol mass output rate and the aerosol particle size distribution. The mass output rate of copper aerosols raises from 2 mg h−1 to 2 g h−1 when increasing the electrical power from 9 to 900 W. The particle mean size (SMPS d g) varies between 20 and 100 nm depending upon the electrical power and the gas flow rate, whereas the particle size dispersion (SMPS σ g) ranges from 1.4 to 1.7 and is only weakly dependent on the gas flow rate.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Akishev Y, Grushin M, Karalnik V, Petryakov A, Truskin N (2010) Non-equilibrium constricted DC glow discharge in N2 flow at atmospheric pressure: stable and unstable regimes. J Phys D 43:075202

    Article  Google Scholar 

  2. Arkhipenko VI, Kirillov AA, Safronau YA, Simonchik LV, Zgirouski SM (2009) Self-sustained DC atmospheric pressure normal glow discharge in helium: from microamps to amps. Plasma Sources Sci Technol 18:045013

    Article  Google Scholar 

  3. Arkhipenko VI, Kirillov AA, Safronau YA, Simonchik LV, Zgirouski SM (2012) Plasma non-equilibrium of the DC normal glow discharges in atmospheric pressure atomic and molecular gases. Eur Phys J D 66:252

    Article  Google Scholar 

  4. Bartnikas R, Novak JP (1992) On the spark to pseudoglow and glow transition mechanism and discharge detectability. IEEE Trans Electr Insul 27:3–14

    Article  Google Scholar 

  5. Bose AC, Shimizu Y, Mariotti D, Sasaki T, Terashima K, Koshizaki N (2006) Flow rate effect on the structure and morphology of molybdenum oxide nanoparticles deposited by atmospheric-pressure microplasma processing. Nanotechnology 17:5967–5982

    Google Scholar 

  6. Chen J, Lu G, Zhu L, Flagan RC (2007) A simple and versatile mini-arc plasma source for nanocrystal synthesis. J Nanopart Res 9:203–213

    Article  Google Scholar 

  7. Cole JJ, Lin ECh, Barry ChR, Jacobs HO (2009) Continuous nanoparticle generation and assembly by atmospheric pressure arc discharge. Appl Phys Lett 95(113101):1–3

    Google Scholar 

  8. Coulombe S, Meunier JL (1997) Thermo-field emission: a comparative study. J Phys D 30:776–780

    Article  Google Scholar 

  9. Cundall CM, Craggs JD (1955) Electrode vapour jets in spark discharge. Spectrochim Acta 7:149–164

    Article  Google Scholar 

  10. Daalder JE (1981) Cathode spots and vacuum arcs. Physica C 104:91–106

    Article  Google Scholar 

  11. Finkelnburg W (1948) Electrode vapor jets in arc and spark discharges. Phys Rev 74:222–223

    Article  Google Scholar 

  12. Förster H, Wolfrum C, Peukert W (2012) Experimental study of metal nanoparticle synthesis by an arc evaporation/condensation process. J Nanopart Res 14:926

    Article  Google Scholar 

  13. Gray EW, Pharney JR (1974) Electrode erosion by particle ejection in low current arcs. J Appl Phys 45:667–671

    Article  Google Scholar 

  14. Guo X, Gutsche A, Wagner M, Seipenbusch M, Nirschl H (2013) Simultaneous SWAXS study of metallic and oxide nanostructured particles. J Nanopart Res 15:1559

    Article  Google Scholar 

  15. Haidar J (2009) Synthesis of Al nanopowders in an anodic arc. Plasma Chem Plasma Process 29:307–319

    Article  Google Scholar 

  16. Hantzsche E (1979) The erosion rate of arc cathode spots by crater formation. Contrib Plasma Phys 20:61–67

    Google Scholar 

  17. Hantzsche E (2003) Mysteries of the arc cathode spot: a retrospective glance. IEEE Trans Plasma Sci 31:799–808

    Article  Google Scholar 

  18. He X, Scharer J, Booske J, Sengele S (2007) Modeling of cold emission cathode by inclusion of combined field and thermoionic emission processes. J Appl Phys 102:056107

    Article  Google Scholar 

  19. Janda M, Martisovits V, Machala Z (2011) Transient spark: a DC-driven repetitively pulsed discharge and its control by electric circuit parameters. Plasma Sources Sci Technol 20:035015

    Article  Google Scholar 

  20. Jenkins J, Jones TB (1957) Glow-arc transition in current stabilized electrical discharges. J Appl Phys 28:663–668

    Article  Google Scholar 

  21. Jones FL (1950) Electrode erosion by spark discharges. Br J Appl Phys 1:60–65

    Article  Google Scholar 

  22. Jones FL (1963) The mechanism of electrode erosion in electrical discharges. Platinum Metals Rev 7:58–65

    Google Scholar 

  23. Karlsson MNA, Deppert K, Karlsson LS, Magnusson MH, Malm J-O, Srinivasan NS (2005) Compaction of agglomerates of aerosol nanoparticles: a compilation of experimental data. J Nanopart Res 7:43–49

    Article  Google Scholar 

  24. Kulkarni NV, Karmakar S, Asthana SN, Nawale AB, Sheikh A, Patole SP, Yoo JB, Mathe VL, Das AK, Bhoraskar SV (2011) Study on growth of hollow nanoparticles of alumina. J Mater Sci 46:2212–2220

    Article  Google Scholar 

  25. Lee SH (2010) Improving breakdown voltage characteristics of GDAs using trigger voltage. J Electr Eng Technol 5:646–652

    Article  Google Scholar 

  26. Lee JG, Li P, Choi ChJ, Dong XL (2010) Synthesis of Mn–Al alloy nanoparticles by plasma arc discharge. Thin Solid Films 519:81–85

    Article  Google Scholar 

  27. Lu G, Chen J, Gajdardziska-Josifovska M (2005) Synthesis of tin oxide nanoparticles using a mini-arc plasma source. Mater Res Soc Symp Proc 876E:R8.7.1–R8.7.6

    Google Scholar 

  28. Machala Z, Marode E, Laux CO, Kruger CH (2004) DC glow discharges in atmospheric pressure air. J Adv Oxid Technol 7(2):133–137

    Google Scholar 

  29. Machala Z, Jedlovský I, Martisovits V (2008) DC discharges in atmospheric air and their transitions. IEEE Trans Plasma Sci 36:918–919

    Article  Google Scholar 

  30. Mariotti D, Sankaran RM (2010) Microplasmas for nanomaterials synthesis. J Phys D 43:323001

    Article  Google Scholar 

  31. Messing ME (2011) Engineered nanoparticles: generation, characterization and applications. PhD thesis, Lund University, Lund, Sweden

  32. Messing ME, Kimberley AD, Wallenberg LR, Deppert K (2009) Generation of size-selected gold nanoparticles by spark discharge—for growth of epitaxial nanowires. Gold Bull 42:20–26

    Article  Google Scholar 

  33. Messing ME, Westerström R, Meuller BO, Blomberg S, Gustafson J, Andersen JN, Lundgren E, van Rijn R, Balmes O, Bluhm H, Deppert K (2010) Generation of Pd model catalyst nanoparticles by spark discharge. J Phys Chem C 114:9257–9263

    Article  Google Scholar 

  34. Mollart TP (1993) Electron emission processes in cold cathode thermal arcs. PhD Thesis, Durham University, Durham, UK

  35. Mueller BO, Messing ME, Engberg DLJ, Jansson AM, Johansson LIM, Norlén SM, Tureson N, Deppert K (2012) Review of spark discharge generators for production of nanoparticle aerosols. Aerosol Sci Technol 46:1256–1270

    Article  Google Scholar 

  36. Pai DZ (2011) Nanomaterials synthesis at atmospheric pressure using nanosecond discharges. J Phys D 44:174024

    Article  Google Scholar 

  37. Pai DZ, Lacoste DA, Laux CO (2010) Nanosecond repetitively pulsed discharge in air at atmospheric pressure—the spark regime. Plasma Sources Sci Technol 19:065015

    Article  Google Scholar 

  38. Pilon AM (1957) Oscillations in direct current glow discharge. Phys Rev 107:25–27

    Article  Google Scholar 

  39. Qiao H, Wei Z, Yang H, Zhu L, Yan X (2009) Preparation and characterization of NiO nanoparticles by anodic arc plasma. J Nanomater 2009:795928

    Article  Google Scholar 

  40. Saepour M, Harry JE (1991) Temporary arc discharges resulting from glow-to-arc transitions and effect of power supply parameters (1991). Int J Electron 70:459–465

    Article  Google Scholar 

  41. Schwyn S, Garwin E, Schmidt-Ott A (1988) Aerosol generation by spark discharge. J Aerosol Sci 19:639–642

    Article  Google Scholar 

  42. Shin MG, Park DW (2010) Synthesis of copper nanopowders by transferred arc and non-transferred arc plasma synthesis. J Optoelectron Adv Mater 12:528–534

    Google Scholar 

  43. Staack D, Farouk B, Gutsol A, Fridman A (2005) Characterization of a DC atmospheric pressure normal glow discharge. Plasma Sources Sci Technol 14:700–711

    Article  Google Scholar 

  44. Staack D, Farouk B, Gutsol A, Fridman A (2008) DC normal glow discharges in atmospheric pressure atomic and molecular gases. Plasma Sources Sci Technol 17:025013

    Article  Google Scholar 

  45. Stein M, Kiesler D, Kruis FE (2013) Effect of carrier gas composition on transferred arc metal nanoparticle synthesis. J Nanopart Res 15:1400

    Article  Google Scholar 

  46. Tabrizi NS, Ullmann M, Vons VA, Lafont U, Schmidt-Ott A (2009a) Generation of nanoparticles by spark discharge. J Nanopart Res 11:315–332

    Article  Google Scholar 

  47. Tabrizi NS, Xu Q, van der Pers NM, Lafont U, Schmidt-Ott A (2009b) Synthesis of mixed metallic nanoparticles by spark discharge. J Nanopart Res 11:1209–1218

    Article  Google Scholar 

  48. Tabrizi NS, Xu Q, van der Pers NM, Schmidt-Ott A (2010) Generation of mixed metallic nanoparticles from immiscible metals by spark discharge. J Nanopart Res 12:247–259

    Article  Google Scholar 

  49. Tanaka M, Watanabe T (2008) Vaporization mechanism from Sn–Ag mixture by Ar–H2 arc for nanoparticle preparation. Thin Solid Films 516:6645–6649

    Article  Google Scholar 

  50. Tao J, Ni J, Shih AJ (2012) Modeling of the anode crater formation in electrical discharge machining. J Manuf Sci Eng Trans ASME 134:011002

    Article  Google Scholar 

  51. Vons VA (2010) Spark discharge generated nanoparticles for hydrogen storage applications. PhD thesis, Delft University of Technology, Delft, The Netherlands

  52. Vons VA, Leegwater H, Legerstee WJ, Eijt SWH, Schmidt-Ott A (2010) Hydrogen storage properties of spark generated palladium nanoparticles. Int J Hydrogen Energy 35:5479–5489

    Article  Google Scholar 

  53. Weber AP, Seipenbusch M, Thanner C, Kasper G (1999) Aerosol catalysis on nickel nanoparticles. J Nanopart Res 1:253–265

    Article  Google Scholar 

  54. Weber AP, Seipenbusch M, Kasper G (2003) Size effects in the catalytic activity of unsupported metallic nanoparticles. J Nanopart Res 5:293–298

    Article  Google Scholar 

  55. Weber AP, Davoodi P, Seipenbusch M, Kasper G (2006) Catalytic behavior of nickel nanoparticles: gasborne vs. supported state. J Nanopart Res 8:445–453

    Article  Google Scholar 

  56. Wei Z, Xia T, Bai L, Wang J, Wu Z, Yan P (2006) Efficient preparation for Ni nanopowders by anodic arc plasma. Mater Lett 60:766–770

    Article  Google Scholar 

  57. Wei Z, Liu L, Yang H, Zhang C, Feng W (2011) Characterization of carbon encapsulated Fe-nanoparticles prepared by confined arc plasma. Trans Nonferrous Met Soc China 21:2016–2030

    Google Scholar 

  58. Yahya AA, Harry JE (1999) Factors affecting the glow-to-arc transition at the cathode of an electric discharge at atmospheric pressure. Int J Electron 86:755–762

    Article  Google Scholar 

  59. Yalin AP, Laux CO, Kruger CH, Zare RN (2002) Spatial profiles of N2 + concentration in an atmospheric pressure nitrogen glow discharge. Plasma Sources Sci Technol 11:248–253

    Article  Google Scholar 

  60. Yu L, Laux CO, Packan DM, Kruger CH (2002) Direct-current glow discharges in atmospheric pressure air plasmas. J Appl Phys 91:2678–2686

    Article  Google Scholar 

  61. Zhu L, Lu G, Mao S, Chen J (2007) Ripening of silver nanoparticles on carbon nanotubes. NANO Brief Rep Rev 2:149–156

    Google Scholar 

Download references

Acknowledgments

This work has been financially supported by the European Union′s Seventh Framework Program (EU FP7) under Grant Agreement No. 280765 (BUONAPART-E). Dr. Julio Gómez (Avanzare S.L., Logroño, Spain) is acknowledged for performing SEM analyses of copper powders.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Esther Hontañón.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hontañón, E., Palomares, J.M., Stein, M. et al. The transition from spark to arc discharge and its implications with respect to nanoparticle production. J Nanopart Res 15, 1957 (2013). https://doi.org/10.1007/s11051-013-1957-y

Download citation

Keywords

  • Spark discharge
  • Glow discharge
  • Arc discharge
  • Mass output rate
  • Particle size distribution