Skip to main content
Log in

Fabrication and magnetic-induced aggregation of Fe3O4 noble metal composites for superior SERS performances

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Fe3O4–noble metal composites were obtained by combining Au, Ag nanoparticles (NPs) with 3-aminopropyltrimethoxysilane-functionalized Fe3O4 NPs. UV–Visible absorption spectroscopy demonstrates the obtained Fe3O4 noble metal composites inherit the typical surface plasmon resonance bands of Au, Ag at 533 and 453 nm, respectively. Magnetic measurements also indicated that the superparamagnetic Fe3O4 noble metal composites have excellent magnetic response behavior. A magnetic-induced idea was introduced to change their aggregated states and take full advantage of their surface-enhanced Raman scattering (SERS) performances. Under the induction of an external magnetic field, the bifunctional Fe3O4 noble metal aggregates exhibit the unique superiority in SERS detection of Rhodamine 6G (R6G), compared with the naturally dispersed Au, Ag NPs. Especially, the detection limit of the Fe3O4–Ag aggregates for R6G is as low as 10−14 M, and the calculated EF reaches up to 1.2 × 106, which meets the requirements for trace detection of analytes. Furthermore, the superiority could be extended to sensitive detection of other organic molecules, such as 4-mercaptopyridine. This work provides a new insight for active adjustment of the aggregated states of SERS substrates and the optimization of SERS performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ahonen P, Laaksonen T, Nykanen A, Ruokolainen J, Kontturi K (2006) Formation of stable Ag-nanoparticle aggregates induced by dithiol cross-linking. J Phys Chem B 110:12954–12958

    Article  CAS  Google Scholar 

  • An Q, Zhang P, Li JM, Ma WF, Guo J, Hu J, Wang CC (2012) Silver-coated magnetite-carbon core-shell microspheres as substrate-enhanced SERS probes for detection of trace persistent organic pollutants. Nanoscale 4:5210–5216

    Article  CAS  Google Scholar 

  • Arenas JF, Fernandez MD, Soto J, Lopez-Tocon I, Otero JC (2003) Role of the electrode potential in the charge-transfer mechanism of surface-enhanced Raman scattering. J Phys Chem B 107:13143–13149

    Article  CAS  Google Scholar 

  • Cai WB, Ren B, Li XQ, She CX, Liu FM, Cai XW, Tian ZQ (1998) Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface. Surf Sci 406:9–22

    Article  CAS  Google Scholar 

  • Chen G, Wang Y, Yang MX, Xu J, Goh SJ, Pan M, Chen HY (2010) Measuring ensemble-averaged surface-enhanced Raman scattering in the hotspots of colloidal nanoparticle dimers and trimers. J Am Chem Soc 132:3644–3645

    Article  CAS  Google Scholar 

  • Chrimes AF, Khashayar K, Stoddart PR, Kayani AA, Mitchell A, Daima H, Bansal V, Kalantar-zadeh K (2012) Active control of silver nanoparticles spacing using dielectrophoresis for surface-enhanced Raman scattering. Anal Chem 84:4029–4035

    Article  CAS  Google Scholar 

  • Etchegoin P, Cohen LF, Hartigan H, Brown RJC, Milton MJT, Gallop JC (2003) Electromagnetic contribution to surface enhanced Raman scattering revisited. J Chem Phys 119:5281–5289

    Article  CAS  Google Scholar 

  • Frens G (1973) Controlled nucleation for regulation of particle-size in monodisperse gold suspensions. Nature Phys Sci 241:20–22

    CAS  Google Scholar 

  • Gan ZB, Zhao AW, Zhang MF, Wang DP, Tao WY, Guo HY, Li D, Li M, Gao Q (2012) A facile strategy for obtaining fresh Ag as SERS active substrates. J Colloid Interface Sci 366:23–27

    Article  CAS  Google Scholar 

  • Gong P, Li HM, He XX, Wang KM, Hu JB, Tan WH, Zhang SC, Yang XH (2007) Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology 18:285604

    Article  Google Scholar 

  • Goon IY, Lai L, Lim M, Munroe P, Gooding JJ, Amal R (2009) Fabrication and dispersion of gold-shell-protected magnetite nanoparticles: systematic control using polyethyleneimine. Chem Mater 21:673–681

    Article  CAS  Google Scholar 

  • Guo SJ, Dong SJ, Wang EK (2009) A general route to construct diverse multifunctional Fe3O4/metal hybrid nanoparticles. Chem Eur J 15:2416–2424

    Article  CAS  Google Scholar 

  • Guo H, Li D, Mo YJ (2011) Adsorption of 4-mercaptopyridine onto laser-ablated gold, silver and copper oxide films: a comparative surface-enhanced Raman scattering investigation. J Mol Struct 991:103–107

    Article  CAS  Google Scholar 

  • Hu JW, Zhao B, Xu WQ, Fan YG, Li B, Ozaki Y (2002) Simple method for preparing controllably aggregated silver particle films used as surface-enhanced Raman scattering active substrates. Langmuir 18:6839–6844

    Article  CAS  Google Scholar 

  • Hu FQ, MacRenaris KW, Waters EA, Schultz-Sikma EA, Eckermann AL, Meade TJ (2010) Highly dispersible, superparamagnetic magnetite nanoflowers for magnetic resonance imaging. Chem Commun 46:73–75

    Article  CAS  Google Scholar 

  • Hu QT, Gan ZB, Zheng XW, Zhao AH, Zhang X (2011) High-density attachment of FePt nanoparticles on carbon nanotubes by a facile microwave-assisted polyol method. J Nanopart Res 13:3191–3197

    Article  CAS  Google Scholar 

  • Jin YH, Seo SD, Shim HW, Park KS, Kim DW (2012) Synthesis of core/shell spinel ferrite/carbon nanoparticles with enhanced cycling stability for lithium ion battery anodes. Nanotechnology 23:125402

    Article  Google Scholar 

  • Kho KW, Shen ZX, Zeng HC, Soo KC, Olivo M (2005) Deposition method for preparing SERS-active gold nanoparticle substrates. Anal Chem 77:7462–7471

    Article  CAS  Google Scholar 

  • Kim H, Kosuda KM, Van Duyne RP, Stair PC (2010) Resonance Raman and surface- and tip-enhanced Raman spectroscopy methods to study solid catalysts and heterogeneous catalytic reactions. Chem Soc Rev 39:4802–4844

    Article  Google Scholar 

  • Krebs MD, Erb RM, Yellen BB, Samanta B, Bajaj A, Rotello VM, Alsberg E (2009) Formation of ordered cellular structures in suspension via label-free negative magnetophoresis. Nano Lett 9:1812–1817

    Article  CAS  Google Scholar 

  • Lee PC, Melsel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86:3391–3395

    Article  CAS  Google Scholar 

  • Lee JH, Huh YM, Jun YW, Seo JW, Jang JT, Kim HT, Cho EJ, Yoon HG, Suh JS, Cheon J (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13:95–99

    Article  CAS  Google Scholar 

  • Li JF, Huang YF, Ding Y, Yang ZL, Li SB, Zhou XS, Fan FR, Zhang W, Zhou ZY, Zhou ZY, Wu DY, Ren B, Wang ZL, Tian ZQ (2010) Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464:392–395

    Article  CAS  Google Scholar 

  • Li XY, Shi ZJ, Lei YQ, Li XN, Tang JK, Song SY, Zhang HJ (2011) Hierarchically structured Fe3O4 microspheres: morphology control and their application in wastewater treatment. CrystEngComm 13:642–648

    Article  CAS  Google Scholar 

  • Li YS, Church JS, Woodhead AL (2012) Infrared and Raman spectroscopic studies on iron oxide magnetic nano-particles and their surface modifications. J Magn Magn Mater 324:1543–1550

    Article  CAS  Google Scholar 

  • Lombardi JR, Brike RL, Lu T, Xu J (1986) Charge-transfer theory of surface enhanced Raman-spectroscopy-Herzberg–Teller contributions. J Chem Phys 84:4174–4180

    Article  CAS  Google Scholar 

  • McFarland AD, Young MA, Dieringer JA, Vanduyne RP (2005) Wavelength-scanned surface-enhanced Raman excitation spectroscopy. J Phys Chem B 109:11279–11285

    Article  CAS  Google Scholar 

  • Mornet S, Vasseur S, Grasset F (2004) Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 14:2161–2175

    Article  CAS  Google Scholar 

  • Moulder JF, Stickle WF, Sobol PE, Bombken KD (1992) Handbook of X-ray photoelectron spectroscopy. Physical Electronics Division Perkin-Elmer Corp, Eden Prairie

    Google Scholar 

  • Nie SM, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106

    Article  CAS  Google Scholar 

  • Nigam S, Barick KC, Bahadur D (2011) Development of citrate-stabilized Fe3O4 nanoparticles: conjugation and release of doxorubicin for therapeutic applications. J Magn Magn Mater 323:237–243

    Article  CAS  Google Scholar 

  • Park HY, Schadt MJ, Wang LY, Lim IS, Njoki PN, Kim SH, Jang MY, Luo J, Zhong CJ (2007) Fabrication of magnetic core@shell Fe oxide@Au nanoparticles for interfacial bioactivity and bio-separation. Langmuir 23:9050–9056

    Article  CAS  Google Scholar 

  • Prucek R, Tuček J, Kilianová M, Panáček A, Kvítek L, Filip J, Kolář M, Tománková K, Zbořil R (2011) The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles. Biomaterials 32:4704–4713

    Article  CAS  Google Scholar 

  • Schwartzberg AM, Grant CD, Wolcott A, Talley CE, Huser TR, Bogomolni R, Zhang JZ (2004) Unique gold nanoparticle aggregates as a highly active surface-enhanced Raman scattering substrate. J Phys Chem B 108:19191–19197

    Article  CAS  Google Scholar 

  • Shalaev V, Sarychev AK (1998) Nonlinear optics of random metal-dielectric films. Phys Rev B 57:13265–13288

    Article  CAS  Google Scholar 

  • Son SJ, Reichel J, He B, Schuchman M, Lee SB (2005) Magnetic nanotubes for magnetic-field-assisted bioseparation, biointeraction, and drug delivery. J Am Chem Soc 127:7316–7317

    Article  CAS  Google Scholar 

  • Su Y, He Q, Yan XH, Fei JB, Cui Y, Li JB (2011) Peptide mesocrystals as templates to create an Au surface with stronger surface-enhanced Raman spectroscopic properties. Chem Eur J 17:3370–3375

    Article  CAS  Google Scholar 

  • Sun LL, Song YH, Wang L, Guo CL, Sun YJ, Liu ZL, Li Z (2008) Ethanol-induced formation of silver nanoparticle aggregates for highly active SERS substrates and application in DNA detection. J Phys Chem C 112:1415–1422

    Article  CAS  Google Scholar 

  • Wang XZ, Zhao ZB, Qu JY, Wang ZY, Qiu JS (2010) Shape-control and characterization of magnetite prepared via a one-step solvothermal route. Cryst Growth Des 10:2863–2869

    Article  CAS  Google Scholar 

  • Watanabe H, Hayazawa N, Inouye Y, Kawata S (2005) DFT vibrational calculations of Rhodamine 6G adsorbed on silver: analysis of tip-enhanced Raman spectroscopy. J Phys Chem B 109:5012–5020

    Article  CAS  Google Scholar 

  • Xie Y, Zheng XW, Jiang XC, Lu J, Zhu LY (2002) Sonochemical synthesis and mechanistic study of copper selenides Cu2−x Se, beta-CuSe, and Cu3Se2. Inorg Chem 41:387–392

    Article  CAS  Google Scholar 

  • Xu HX, Bjerneld EJ, Kall M, Borjesson L (1999) Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys Rev Lett 83:4357–4360

    Article  CAS  Google Scholar 

  • Yang LB, Liu HL, Wang J, Zhou F, Tian ZQ, Liu JH (2011) Metastable state nanoparticle-enhanced Raman spectroscopy for highly sensitive detection. Chem Commun 47:3583–3585

    Article  CAS  Google Scholar 

  • Zhai WL, Li DW, Qu LL, Fossey JS, Long YT (2012) Multiple depositions of Ag nanoparticles on chemically modified agarose films for surface-enhanced Raman spectroscopy. Nanoscale 4:137–142

    Article  CAS  Google Scholar 

  • Zhang MF, Zhao AW, Guo HY, Wang DP, Gan ZB, Sun HH, Li D, Li M (2011) Green synthesis of rosettelike silver nanocrystals with textured surface topography and highly efficient SERS performances. CrystEngComm 13:5709–5717

    Article  CAS  Google Scholar 

  • Zhou T, Wu BY, Xing D (2012) Bio-modified Fe3O4 core/Au shell nanoparticles for targeting and multimodal imaging of cancer cells. J Mater Chem 22:470–477

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 61205150), the National Basic Research Program of China (2011CB302103), the State Key Laboratories of Transducer Technology (Skt0906).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiwu Zhao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1423 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gan, Z., Zhao, A., Zhang, M. et al. Fabrication and magnetic-induced aggregation of Fe3O4 noble metal composites for superior SERS performances. J Nanopart Res 15, 1954 (2013). https://doi.org/10.1007/s11051-013-1954-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1954-1

Keywords

Navigation