Skip to main content
Log in

TiS2–MWCNT hybrid as high performance anode in lithium-ion battery

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The present work reports the preparation of hybrids by simple dry grinding of titanium sulfide (TiS2) and multi-walled carbon nanotubes (MWCNTs) in different weight ratio and their characterization. X-ray diffraction and Raman studies indicated the presence of interaction between the TiS2 and MWCNT. Field emission scanning electron microscopy and high resolution transmission electron microscopy showed the formation of three-dimensional architecture and co-dispersion in TiS2–MWCNT (1:1) hybrid. X-ray photoelectron spectroscopy also confirmed the presence of TiS2 and MWCNT in the prepared hybrid. Thermogravimetric analysis indicated an increase in thermal stability with higher MWCNT content. The results of the electrochemical analyses indicated that TiS2–MWCNT (1:1) hybrid exhibited an enhanced performance as lithium-ion battery anode. The initial specific capacity was found to be ≈450 mAh g−1 with 80 % retention in capacity after 50 discharge–charge cycles. These values are significantly higher compared to those for TiS2, MWCNT or other TiS2–MWCNT hybrids. Such improved performance is attributed to the presence of a synergistic effect between TiS2 and MWCNT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anderman M, Lundquist JT, Johnson SL, Giovannoni RT (1989) Rechargeable lithium–titanium disulphide cells of spirally-wound design. J Power Sources 26:309–312

    Article  Google Scholar 

  • Brauer G (1965) Handbook of preparative inorganic chemistry. Academic Press, New York

    Google Scholar 

  • Chan K, Chen W (2011) In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chem Commun 47:4252–4254

    Article  Google Scholar 

  • Chang K, Chen W (2011) l-Cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5:4720–4728

    Article  Google Scholar 

  • Chen J, Li S-L, Tao Z-L, Gao F (2003) Low-temperature synthesis of titanium disulfide nanotubes. Chem Commun 8:980–981

    Article  Google Scholar 

  • Chen S-Z, Zhang P-Y, Zhu W-P, Chen L, Xu SM (2006) Deactivation of TiO2 photocatalytic films loaded on aluminium: XPS and AFM analyses. Appl Surf Sci 252:7532–7538

    Article  Google Scholar 

  • Chen J, Chen L, Zhang Z, Li J, Wang L, Jiang W (2012) Graphene layers produced from carbon nanotubes by friction. Carbon 50:1934–1941

    Article  Google Scholar 

  • Ding S, Chen JS, Lou XWD (2011) Glucose-assisted growth of MoS2 nanosheets on CNT backbone for improved lithium storage properties. Chem Euro J 17:13142–13145

    Article  Google Scholar 

  • Goh PS, Ng BC, Ismail AF, Aziz M, Hayashi Y (2012) Pre-treatment of multi-walled carbon nanotubes for polyetherimide mixed matrix hollow fiber membranes. J Colloid Interface Sci 386:80–87

    Article  Google Scholar 

  • Kang C, Lahiri I, Baskaran R, Kim W-G, Sun YK, Choi W (2012) 3-Dimensional carbon nanotube for Li-ion battery anode. J Power Sources 219:364–370

    Article  Google Scholar 

  • Kartick B, Srivastava SK, Mahanty S (2013) MoS2–MWCNT hybrids as a superior anode in lithium-ion batteries. Chem Commun 49:1823–1825

    Article  Google Scholar 

  • Kim Y, Park K-S, Song SH, Han J, Goodenough JB (2009) Access to M3+/M2+ redox couples in layered Li m S2 sulfides ? (M = Ti, V, Cr) as anodes for Li-ion battery. J Electrochem Soc 156:A703–A708

    Article  Google Scholar 

  • Lai H, Li J, Chen Z, Huang Z (2012) Carbon nanohorns as a high performance carrier for MnO2 anode in lithium-ion batteries. ACS Appl Mater Interfaces 4:2325–2328

    Article  Google Scholar 

  • Lavela P, Morales J, Sanchez L, Tirado JL (1997) Novel layered chalcogenides as electrode materials for lithium-ion batteries. J Power Sources 68:704–707

    Article  Google Scholar 

  • Let AL, Mainwaring DE, Rix CJ, Murugaraj P (2007) Thio sol–gel synthesis of titanium disulfide thin films and nanoparticles using titanium(IV) alkoxide precursors. J Phys Chem Solid 68:1428–1435

    Article  Google Scholar 

  • Lu L, Han X, Li J, Hua J, Ouyang M (2013) A review on the key issues for lithium-ion battery management in electric vehicles. J Power Sources 226:272–288

    Article  Google Scholar 

  • Ma L, Chen WX, Xu ZD, Xia JB, Li X (2006) Carbon nanotubes coated with tubular MoS2 layers prepared by hydrothermal reaction. Nanotechnology 17:571–574

    Article  Google Scholar 

  • Mandal TK, Srivastava SK, Samantaray BK, Mathur BK (1999a) X-ray diffraction and electron microscopic studies on selenium substituted indium intercalation compounds of tungsten disulphide. Mater Sci Eng B Adv B64:143–148

    Article  Google Scholar 

  • Mandal TK, Srivastava SK, Samantaray BK, Mathur BK (1999b) Structural characterization of indium intercalation compounds of molybdenum sulphoselenide by X-ray diffraction and electron microscopy. J Mater Sci Lett 18:859–864

    Article  Google Scholar 

  • Manickam M, Mitchell DRG, Singh P (2007) TEM investigation of MnO2 cathode containing TiS2 and its influence in aqueous lithium secondary battery. Electrochem Acta 52:3294–3298

    Article  Google Scholar 

  • Mattheiss LF (1973) Band structures of transition-metal-dichalcogenide layer compounds. Phys Rev B 8:3719–3740

    Article  Google Scholar 

  • McKelvy MJ, Glaunsinger WS (1986) Compositional and structural investigations of highly stoichiometric titanium disulfide. Mater Res Bull 21:835–842

    Article  Google Scholar 

  • McKelvy MJ, Glaunsinger WS (1987) Synthesis and characterization of nearly stoichiometric titanium disulfide. J Solid State Chem 66:181–188

    Article  Google Scholar 

  • Mkhabela VJ, Mishra AK, Mbianda XY (2011) Thermal and mechanical properties of phosphorylated multiwalled carbon nanotube/polyvinyl chloride composites. Carbon 49:610–617

    Article  Google Scholar 

  • Moon S-I, Kim J-U, Jin B-S, Hyung Y-E, Yun M-S, Gu H-B, Ko Y (1997) Characterization of TiS2 composite cathodes with solid polymer electrolyte. J Power Sources 68:660–663

    Article  Google Scholar 

  • Narayanan SR, Shen DH, Surampudi S, Attia AI, Halpert G (1993) Electrochemical impedence spectroscopy of lithium–titanium disulfide rechargeable cells. J Electrochem Soc 140:1854–1861

    Article  Google Scholar 

  • Ovsyannikov SV, Shchennikov VV, Cantarero A, Cros A, Titov AN (2007) Raman spectra of (PbS)1.18(TiS2)2 misfit compound. Mater Sci Eng A 462:422–426

    Article  Google Scholar 

  • Park S-K, Yu S-H, Woo S, Quan B, Lee D-C, Kim MK, Sung Y-E, Piao Y (2013) A simple l-cysteine-assisted method for the growth of MoS2 nanosheets on carbon nanotubes for high-performance lithium ion batteries. Dalton Trans 42:2399–2405

    Article  Google Scholar 

  • Ryu H-S, Kim JS, Park JS, Park JW, Kim KW, Ahn JH, Nam TH, Wang G, Ahn HJ (2013) Electrochemical properties and discharge mechanism of Na/TiS2 cells with liquid electrolyte at room temperature. J Electrochem Soc 160:A338–A343

    Article  Google Scholar 

  • Saleh TA (2011) The influence of treatment temperature on the acidity of MWCNT oxidized by HNO3 or a mixture of HNO3/H2SO4. Appl Surf Sci 257:7746–7751

    Article  Google Scholar 

  • Sameera I, Bhatia Ravi, Prasad V (2010) Preparation, characterization and electrical conductivity studies of MWCNT/ZnO nanoparticles hybrid. Phys B 405:1709–1714

    Article  Google Scholar 

  • Slane (1991) Rechargeable lithium battery system. US Patent 4,983,476

  • Srivastava SK, Pramanik M, Palit D, Mathur BK, Kar AK, Samantaray BK, Haeuseler H, Cordes W (2001) Electrical, optical, and scanning tunneling microscopic studies on layer type CdIn2S4−x Se x (1.75 ≤ x ≤ 2.75). Chem Mater 13:4342–4347

    Article  Google Scholar 

  • Trevey JE, Stoldt CB, Lee S-H (2013) High power nanocomposite TiS2 cathodes for all-solid-state lithium batteries. J Electrochem Soc 158:A1282–A1289

    Article  Google Scholar 

  • Wang Q, Li J (2007) Facilitated lithium storage in MoS2 overlayers supported on coaxial carbon nanotubes. J Phys Chem C 111:1675–1682

    Article  Google Scholar 

  • Wang Z, Meng X, Li J, Du X, Li S, Jiang Z, Tang T (2009) A simple method for preparing carbon nanotubes/clay hybrids in water. J Phys Chem C 113:8058–8064

    Article  Google Scholar 

  • Wang S, Jiang X, Zheng H, Wu H, Kim S-J, Feng C (2012) Solvothermal synthesis of MoS2/carbon nanotube composites with improved electrochemical performance for lithium ion batteries. Nanosci Nanotechnol Lett 4:378–383

    Article  Google Scholar 

  • Whittingham M (1978) Metal guests in chalcogenide hosts. Prog Solid State Chem 12:41–99

    Article  Google Scholar 

  • Whittingham MS, Panella JR (1981) Formation of stoichiometric titanium disulfide. Mater Res Bull 16:45

    Article  Google Scholar 

  • Xie X, Gao L (2007) Characterization of a manganese dioxide/carbon nanotube composite fabricated using an in situ coating method. Carbon 45:2365–2373

    Article  Google Scholar 

  • US patent, 92.09.15 92 US-945039 (94.04.05) H01M 4/52

  • Yu CS, Xiang WZ, Peng FX, Lei ZH, Jiang LX, Quan CL (2011) Characterization of TiS2 as an anode material for lithium ion batteries. Acta Phys Chim Sin 27:97–102

    Google Scholar 

Download references

Acknowledgments

SKS and BK are grateful to CSIR and DRDO, New Delhi, India for providing financial support. They are also thankful to Central Research facility, IIT Kharagpur for providing Raman facility and a platform for carrying out the present work. SM thanks Director, CSIR–CGCRI for permission to publish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suneel Kumar Srivastava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kartick, B., Srivastava, S.K. & Mahanty, S. TiS2–MWCNT hybrid as high performance anode in lithium-ion battery. J Nanopart Res 15, 1950 (2013). https://doi.org/10.1007/s11051-013-1950-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1950-5

Keywords

Navigation