Skip to main content

Advertisement

Log in

Biomimetic nanoparticles with polynucleotide and PEG mixed-monolayers enhance calcium phosphate mineralization

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Biomineralization of hydroxyapatite (Ca10(PO4)6(OH)2) is of significant importance in biomedical applications such as bone and dental repair, and biomimetic control of mineral formation may lead to more effective restorative procedures. Gold nanoparticles are functional scaffolds on which to assemble multi-component monolayers capable of mimicking protein activity in the templated synthesis of calcium phosphate. The goal of this research was to explore nanoparticle templates with mixed-monolayers of uncharged polar polyethylene glycol (PEG) molecules and highly charged polynucleotide and amino acid molecules in their ability to influence mineralization rates and mineral particle size and morphology. This research demonstrates through time-resolved optical density and dynamic light scattering measurements that the combination of tiopronin, PEG, and DNA presented on a nanoparticle surface decreases nanoparticle aggregation from 59 to 21 nm solvated radius, increases mineralization kinetics from 1.5 × 10−3 to 3.1 × 10−3 OD/min, and decreases mineral particle size from 685 to 442 nm average radius. FT-IR and TEM data demonstrate that mineralized material, while initially amorphous, transforms to a semi-crystalline material when guided by template interactions. This demonstrates that surface-tailored monolayer protected cluster scaffolds are successful and controllable mineralization templates with further potential for biomedical applications involving calcium phosphate and other biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ackerson CJ, Jadzinsky PD, Jensen GJ, Kornberg RD (2006) Rigid, specific, and discrete gold nanoparticle/antibody conjugates. J Am Chem Soc 128:2635–2640

    Article  Google Scholar 

  • Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatized gold nanoparticles in a two-phase liquid–liquid system. Chem Commun 7:801–802

    Article  Google Scholar 

  • Brutchey RL, Morse DE (2008) Silicatein and the translation of its molecular Mechanism of biosilification into low temperature nanomaterial synthesis. Chem Rev 108:4915–4934

    Article  Google Scholar 

  • Chen C-L, Bromley KM, Moradian-Oldak J, DeYoreo JJ (2011) In situ AFM study of amelogenin assembly and disassembly dynamics on charged surfaces provides insights on matrix protein self-assembly. J Am Chem Soc 133:17406–17413

    Article  Google Scholar 

  • Cliffel DE, Turner BN, Huffman BJ (2009) Nanoparticle-based biological mimetics. Adv Rev 1:47–59

    Google Scholar 

  • Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications towards biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  Google Scholar 

  • Dickerson MB, Sandhage KH, Naik RR (2008) Protein- and peptide-directed synthesis of inorganic materials. Chem Rev 108:4935–4978

    Article  Google Scholar 

  • Estroff LA, Hamilton AD (2001) At the interface of organic and inorganic chemistry: bioinspired synthesis of composite materials. Chem Mater 13:3227–3235

    Article  Google Scholar 

  • Gadaleta SJ, Paschalis EP, Betts F, Mendelsohn R, Boskey AL (1996) Fourier transform infrared spectroscopy of the solution-mediated conversion of amorphous calcium phosphate to hydroxyapatite: new correlations between X-ray diffraction and infrared data. Calcif Tissue Int 58:9–16

    Article  Google Scholar 

  • Gerdon AE, Wright DW, Cliffel DE (2005) Hemagglutinin linear epitope presentation on monolayer-protected clusters elicits strong antibody binding. Biomacromolecules 6:3419–3424

    Article  Google Scholar 

  • Gerdon AE, Wright DW, Cliffel DE (2006) Epitope mapping of the protective antigen of B. anthracis by using nanoclusters presenting Conformational peptide epitopes. Angew Chem Int Ed 45:594–598

    Article  Google Scholar 

  • Gies AP, Hercules DM, Gerdon AE, Cliffel DE (2007) Electrospray mass spectrometry study of tiopronin monolayer-protected gold nanoclusters. J Am Chem Soc 129:1095–1104

    Article  Google Scholar 

  • Gonzalez KA, Wilson LJ, Wu W, Nancollas GH (2002) Synthesis and in vitro characterization of a tissue-selective fullerene: vectoring C60(OH)16AMBP to mineralized Bone. Bioorg Med Chem 10:1997

    Article  Google Scholar 

  • Gungormus M, Fong H, Kim IW, Evans JS, Tamerler C, Sarikaya M (2008) Regulation of in vitro calcium phosphate mineralization by combinatorially selected hydroxyapatite-binding peptides. Biomacromolecules 9:966–973

    Article  Google Scholar 

  • Harkness KM, Hixson BC, Fenn LS, Turner BN, Rape AC, Simpson CA, Huffman BJ, Okoli TC, McLean JA, Cliffel DE (2010) A structural mass spectrometry strategy for the relative quantitation of ligands on mixed monolayer-protected gold nanoparticles. Anal Chem 82:9268–9274

    Article  Google Scholar 

  • Hartgerink JD, Beniash E, Stupp SI (2002) Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials. Proc Natl Acad Sci USA 99:5133–5138

    Article  Google Scholar 

  • Heuer AH, Fink DJ, Laraia VJ, Arias JL, Calvert PD, Kendall K, Messing GL, Blackwell J, Rieke PC, Thompson DH, Wheeler AP, Veis A, Caplan AI (1992) Innovative materials processing strategies: a biomimetic approach. Science 255:1098–1105

    Article  Google Scholar 

  • Hostetler MJ, Wingate JE, Zhong C-J, Harris JE, Vachet RW, Clark MR, Londono JD, Green SJ, Stokes JJ, Wignall GD, Glish GL, Porter MD, Evans ND, Murray RW (1998) Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size. Langmuir 14:17–30

    Article  Google Scholar 

  • Hostetler MJ, Templeton AC, Murray RW (1999) Dynamics of place-exchange reactions on monolayer-protected gold cluster molecules. Langmuir 15:3782–3789

    Article  Google Scholar 

  • Jadzinsky PD, Calero G, Ackerson CJ, Bushnell DA, Kornberg RD (2007) Structure of a thiol monolayer-protected gold nanoparticle at 1.1 a resolution. Science 318:430–433

    Article  Google Scholar 

  • Johnson JCS, Gabriel DA (1994) Laser light scattering. Dover Publications, New York

    Google Scholar 

  • Kim K, Fisher JP (2007) Nanoparticle technology in bone tissue engineering. J Drug Targeting 15:241–252

    Article  Google Scholar 

  • Kisailus D, Najarian M, Weaver JC, Morse DE (2005) Functionalized gold nanoparticles mimic catalytic activity of a polysiloxane-synthesizing enzyme. Adv Mater 17:1234–1239

    Article  Google Scholar 

  • Kuther J, Seshadri R, Tremel W (1998) Crystallization of calcite spherules around designer nuclei. Angew Chem Int Ed 37:3044–3047

    Article  Google Scholar 

  • Lee I, Han SW, Choi HJ, Kim K (2001) Nanoparticle-directed crystallization of calcium carbonate. Adv Mater 13:1617–1620

    Article  Google Scholar 

  • Lee I, Han SW, Lee SJ, Choi HJ, Kim K (2002) Formation of patterned continuous calcium carbonate films on self-assembled monolayers via nanoparticle-directed crystallization. Adv Mater 14:1640–1643

    Article  Google Scholar 

  • Leontowich AFG, Calver CF, Dasog M, Scott RWJ (2010) Surface properties of water-soluble glycine-cysteamine-protected gold clusters. Langmuir 26:1285–1290

    Article  Google Scholar 

  • Li Y, Thula TT, Jee S, Perkins SL, Aparicio C, Douglas EP, Gower LB (2012) Biomimetic mineralization of woven bone-like nanocomposites: role of collagen cross-links. Biomacromolecules 13:49–59

    Article  Google Scholar 

  • Liji Sobhana SS, Sundaraseelan J, Sekar S, Sastry TP, Mandal AB (2009) Gelatin–chitosan composite capped gold nanoparticles: a matrix for the growth of hydroxyapatite. J Nanopart Res 11:333–340

    Article  Google Scholar 

  • Lowenstam HA (1981) Minerals formed by organisms. Science 2011:1126–1131

    Article  Google Scholar 

  • Mann S, Archibald DD, Didymus JM, Douglas T, Heywood BR, Meldrum FC, Reeves NJ (1993) Crystallization at inorganic-organic interfaces: biominerals and biomimetic synthesis. Science 261:1286–1292

    Article  Google Scholar 

  • Margolis HC, Beniash E, Fowler CE (2006) Role of macromolecular assembly of enamel matrix proteins in enamel formation. J Dent Res 85:775–793

    Article  Google Scholar 

  • Nakatani N, Kozaki D, Masuda W, Nakagoshi N, Hasebe K, Mori M, Tanaka K (2008) Simultaneous spectrophotometric determination of phosphate and silicate ions in river water by using ion-exclusion chromatographic separation and post-column derivatization. Anal Chim Acta 619:110–114

    Article  Google Scholar 

  • Ngourn SC, Butts HA, Petty AR, Anderson JE, Gerdon AE (2012) Quartz crystal microbalance analysis of DNA-templated calcium phosphate mineralization. Langmuir 28:12151–12158

    Article  Google Scholar 

  • Olszta MJ, Douglas EP, Gower LB (2003) Scanning electron microscopic analysis of the mineralization of Type I collagen via a polymer-induced liquid-precursor (PILP) process. Calcif Tissue Int 72:583–591

    Article  Google Scholar 

  • Onuma K, Ito A (1998) Cluster growth model for hydroxyapatite. Chem Mater 10:3346–3351

    Article  Google Scholar 

  • Palmer LC, Newcomb CJ, Kaltz SR, Spoerke ED, Stupp SI (2008) Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem Rev 108:4754–4783

    Article  Google Scholar 

  • Rautaray D, Kumar PS, Wadgaonkar PP, Sastry M (2004) Highly versatile free-standing nano-gold membranes as scaffolds for the growth of calcium carbonate crystals. Chem Mater 16:988–993

    Article  Google Scholar 

  • Rautaray D, Mandal S, Sastry M (2005) Synthesis of hydroxyapatite crystals using amino acid-capped gold nanoparticles as a scaffold. Langmuir 21:5185–5191

    Article  Google Scholar 

  • Ross RD, Roeder RK (2011) Binding affinity of surface functionalized gold nanoparticles to hydroxyapatite. J Biomed Mater Res A 99A:58–66

    Article  Google Scholar 

  • Sargeant TD, Guler MO, Oppenheimer SM, Mata A, Satcher RL, Dunand DC, Stupp SI (2008) Hybrid bone implants: self-assembly of peptide amphiphile nanofibers within porous titatnium. Biomaterials 29:161–171

    Article  Google Scholar 

  • Sarikaya M, Tamerler C, Jen AK-Y, Schulten K, Baneyx F (2003) Molecular biomimetics: nanotechnology through biology. Nat Mater 2:577–585

    Article  Google Scholar 

  • Sastry TP, Sundaraseelan J, Swarnalatha K, Liji Sobhana SS, Uma Makheswari M, Sekar S, Mandal AB (2008) Growth of hydroxyapatite on physiologically clotted fibrin capped gold nanoparticles. Nanotechnology 19:245604

    Article  Google Scholar 

  • Shenhar R, Rotello VM (2003) Nanoparticles: scaffolds and building blocks. Acc Chem Res 36:549–561

    Article  Google Scholar 

  • Simpson CA, Huffman BJ, Gerdon AE, Cliffel DE (2010) Unexpected toxicity of monolayer protected gold clusters eliminated by peg-thiol place exchange reactions. Chem Res Toxicol 23:1608–1616

    Article  Google Scholar 

  • Simpson CA, Agrawal AC, Balinski A, Harkness KM, Cliffel DE (2011) Short-chain PEG mix-monolayer protected gold Clusters increase clearance and red blood cell counts. ACS Nano 5:3577–3584

    Article  Google Scholar 

  • Templeton AC, Hostetler MJ, Warmoth EK, Chen S, Hartshorn CM, Krishnamurthy VM, Forbes MDE, Murray RW (1998) Gateway reations to diverse, Polyfunctional monolayer-protected gold clusters. J Am Chem Soc 120:4845–4849

    Article  Google Scholar 

  • Templeton AC, Chen S, Gross SM, Murray RW (1999a) Water-soluble, isolable gold clusters protected by tiopronin and coenzyme A monolayers. Langmuir 15:66–76

    Article  Google Scholar 

  • Templeton AC, Cliffel DE, Murray RW (1999b) Redox and fluorophore functionalization of water-soluble, tiopronin-protected gold clusters. J Am Chem Soc 120:4845–4849

    Article  Google Scholar 

  • Templeton AC, Wuelfing WP, Murray RW (2000) Monolayer-protected cluster molecules. Acc Chem Res 33:27–36

    Article  Google Scholar 

  • Tkachenko AG, Xie H, Coleman D, Glomm W, Ryan J, Anderson MF, Franzen S, Feldheim DL (2003) Multifunctional gold nanoparticle-peptide complexes for nuclear targeting. J Am Chem Soc 125:4700–4701

    Article  Google Scholar 

  • Tsang S, Phu F, Baum MM, Poskrebyshev GA (2007) Determination of phosphate/arsenate by a modified molybdenum blue method and reduction of arsenate by S2O4 2−. Talanta 71:1560–1568

    Article  Google Scholar 

  • Uchida M, Kang S, Reichhardt C, Harlen K, Douglas T (2010) The ferritin superfamily: supramolecular templates for materials synthesis. Biochim Biophys Acta 1800:834–845

    Article  Google Scholar 

  • Uskokovic V, Li W, Habelitz S (2011) Amelogenin as a promoter of nucleation and crystal growth of apatite. J Cryst Growth 316:106–117

    Article  Google Scholar 

  • Vogel GL, Chow LC, Brown WE (1983) A microanalytical procedure for the determination of calcium, phosphate and fluoride in enamel biopsy samples. Caries Res 17:23–31

    Article  Google Scholar 

  • Walters MA, Leung YC, Blumenthal NC, LeGeros RZ, Konsker KA (1990) A Raman and infrared spectroscopic investigation of biological hydroxyapatite. J Inorg Biochem 39:193–200

    Article  Google Scholar 

  • Wang C-G, Liao J-W, Gou B-D, Huang J, Tang R-K, Tao J-H, Zhang T-L, Wang K (2009) Crystallization at multiple sites inside particles of amorphous calcium phosphate. Cryst Growth Des 9:2620–2626

    Article  Google Scholar 

  • Whetten RL, Price RC (2007) Nano-golden order. Science 318:407–408

    Article  Google Scholar 

  • White AA, Best SM, Kinloch IA (2007) Hydroxyapatite-carbon nanotube composites for biomedical applications: a review. Int J Appl Ceram Technol 4:1–13

    Article  Google Scholar 

  • Wiedemann-Bidlack FB, Kwak S-Y, Beniash E, Yamakoshi Y, Simmer JP, Margolis HC (2011) Effects of phosphorylation on the self-assembly of native full-length porcine amelogenin and its regulations of calcium phosphate formation in vitro. J Struct Biol 173:250–260

    Article  Google Scholar 

  • Wuelfing WP, Zamborini FP, Templeton AC, Wen X, Yoon H, Murray RW (2001) Monolayer-protected clusters: molecular precursors to metal films. Chem Mater 13:87–95

    Article  Google Scholar 

Download references

Acknowledgments

A. E. Gerdon would like to thank Emmanuel College for funding and support; P. March for access to spectroscopy instrumentation; H. C. Margolis, F. B. Wiedemann-Bidlack, and S.-Y. Kwak at the Forsyth Institute, Cambridge, MA, for helpful discussion and access to microscopy instrumentation; and numerous dedicated and talented undergraduate students, including V. Perrone, T. Cicuto, G. Conklin, S. Ngourn, and H. Butts for their contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aren E. Gerdon.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOCX 763 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasconcellos, K.B., McHugh, S.M., Dapsis, K.J. et al. Biomimetic nanoparticles with polynucleotide and PEG mixed-monolayers enhance calcium phosphate mineralization. J Nanopart Res 15, 1942 (2013). https://doi.org/10.1007/s11051-013-1942-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1942-5

Keywords

Navigation