Journal of Nanoparticle Research

, 15:1942 | Cite as

Biomimetic nanoparticles with polynucleotide and PEG mixed-monolayers enhance calcium phosphate mineralization

  • Kayla B. Vasconcellos
  • Sean M. McHugh
  • Katherine J. Dapsis
  • Alexander R. Petty
  • Aren E. Gerdon
Research Paper


Biomineralization of hydroxyapatite (Ca10(PO4)6(OH)2) is of significant importance in biomedical applications such as bone and dental repair, and biomimetic control of mineral formation may lead to more effective restorative procedures. Gold nanoparticles are functional scaffolds on which to assemble multi-component monolayers capable of mimicking protein activity in the templated synthesis of calcium phosphate. The goal of this research was to explore nanoparticle templates with mixed-monolayers of uncharged polar polyethylene glycol (PEG) molecules and highly charged polynucleotide and amino acid molecules in their ability to influence mineralization rates and mineral particle size and morphology. This research demonstrates through time-resolved optical density and dynamic light scattering measurements that the combination of tiopronin, PEG, and DNA presented on a nanoparticle surface decreases nanoparticle aggregation from 59 to 21 nm solvated radius, increases mineralization kinetics from 1.5 × 10−3 to 3.1 × 10−3 OD/min, and decreases mineral particle size from 685 to 442 nm average radius. FT-IR and TEM data demonstrate that mineralized material, while initially amorphous, transforms to a semi-crystalline material when guided by template interactions. This demonstrates that surface-tailored monolayer protected cluster scaffolds are successful and controllable mineralization templates with further potential for biomedical applications involving calcium phosphate and other biomaterials.


Biomimetic Mineralization Bionanotechnology Functional coatings Gold nanoparticles 



A. E. Gerdon would like to thank Emmanuel College for funding and support; P. March for access to spectroscopy instrumentation; H. C. Margolis, F. B. Wiedemann-Bidlack, and S.-Y. Kwak at the Forsyth Institute, Cambridge, MA, for helpful discussion and access to microscopy instrumentation; and numerous dedicated and talented undergraduate students, including V. Perrone, T. Cicuto, G. Conklin, S. Ngourn, and H. Butts for their contributions.

Supplementary material

11051_2013_1942_MOESM1_ESM.docx (762 kb)
Supplementary material (DOCX 763 kb)


  1. Ackerson CJ, Jadzinsky PD, Jensen GJ, Kornberg RD (2006) Rigid, specific, and discrete gold nanoparticle/antibody conjugates. J Am Chem Soc 128:2635–2640CrossRefGoogle Scholar
  2. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatized gold nanoparticles in a two-phase liquid–liquid system. Chem Commun 7:801–802CrossRefGoogle Scholar
  3. Brutchey RL, Morse DE (2008) Silicatein and the translation of its molecular Mechanism of biosilification into low temperature nanomaterial synthesis. Chem Rev 108:4915–4934CrossRefGoogle Scholar
  4. Chen C-L, Bromley KM, Moradian-Oldak J, DeYoreo JJ (2011) In situ AFM study of amelogenin assembly and disassembly dynamics on charged surfaces provides insights on matrix protein self-assembly. J Am Chem Soc 133:17406–17413CrossRefGoogle Scholar
  5. Cliffel DE, Turner BN, Huffman BJ (2009) Nanoparticle-based biological mimetics. Adv Rev 1:47–59Google Scholar
  6. Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications towards biology, catalysis, and nanotechnology. Chem Rev 104:293–346CrossRefGoogle Scholar
  7. Dickerson MB, Sandhage KH, Naik RR (2008) Protein- and peptide-directed synthesis of inorganic materials. Chem Rev 108:4935–4978CrossRefGoogle Scholar
  8. Estroff LA, Hamilton AD (2001) At the interface of organic and inorganic chemistry: bioinspired synthesis of composite materials. Chem Mater 13:3227–3235CrossRefGoogle Scholar
  9. Gadaleta SJ, Paschalis EP, Betts F, Mendelsohn R, Boskey AL (1996) Fourier transform infrared spectroscopy of the solution-mediated conversion of amorphous calcium phosphate to hydroxyapatite: new correlations between X-ray diffraction and infrared data. Calcif Tissue Int 58:9–16CrossRefGoogle Scholar
  10. Gerdon AE, Wright DW, Cliffel DE (2005) Hemagglutinin linear epitope presentation on monolayer-protected clusters elicits strong antibody binding. Biomacromolecules 6:3419–3424CrossRefGoogle Scholar
  11. Gerdon AE, Wright DW, Cliffel DE (2006) Epitope mapping of the protective antigen of B. anthracis by using nanoclusters presenting Conformational peptide epitopes. Angew Chem Int Ed 45:594–598CrossRefGoogle Scholar
  12. Gies AP, Hercules DM, Gerdon AE, Cliffel DE (2007) Electrospray mass spectrometry study of tiopronin monolayer-protected gold nanoclusters. J Am Chem Soc 129:1095–1104CrossRefGoogle Scholar
  13. Gonzalez KA, Wilson LJ, Wu W, Nancollas GH (2002) Synthesis and in vitro characterization of a tissue-selective fullerene: vectoring C60(OH)16AMBP to mineralized Bone. Bioorg Med Chem 10:1997CrossRefGoogle Scholar
  14. Gungormus M, Fong H, Kim IW, Evans JS, Tamerler C, Sarikaya M (2008) Regulation of in vitro calcium phosphate mineralization by combinatorially selected hydroxyapatite-binding peptides. Biomacromolecules 9:966–973CrossRefGoogle Scholar
  15. Harkness KM, Hixson BC, Fenn LS, Turner BN, Rape AC, Simpson CA, Huffman BJ, Okoli TC, McLean JA, Cliffel DE (2010) A structural mass spectrometry strategy for the relative quantitation of ligands on mixed monolayer-protected gold nanoparticles. Anal Chem 82:9268–9274CrossRefGoogle Scholar
  16. Hartgerink JD, Beniash E, Stupp SI (2002) Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials. Proc Natl Acad Sci USA 99:5133–5138CrossRefGoogle Scholar
  17. Heuer AH, Fink DJ, Laraia VJ, Arias JL, Calvert PD, Kendall K, Messing GL, Blackwell J, Rieke PC, Thompson DH, Wheeler AP, Veis A, Caplan AI (1992) Innovative materials processing strategies: a biomimetic approach. Science 255:1098–1105CrossRefGoogle Scholar
  18. Hostetler MJ, Wingate JE, Zhong C-J, Harris JE, Vachet RW, Clark MR, Londono JD, Green SJ, Stokes JJ, Wignall GD, Glish GL, Porter MD, Evans ND, Murray RW (1998) Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size. Langmuir 14:17–30CrossRefGoogle Scholar
  19. Hostetler MJ, Templeton AC, Murray RW (1999) Dynamics of place-exchange reactions on monolayer-protected gold cluster molecules. Langmuir 15:3782–3789CrossRefGoogle Scholar
  20. Jadzinsky PD, Calero G, Ackerson CJ, Bushnell DA, Kornberg RD (2007) Structure of a thiol monolayer-protected gold nanoparticle at 1.1 a resolution. Science 318:430–433CrossRefGoogle Scholar
  21. Johnson JCS, Gabriel DA (1994) Laser light scattering. Dover Publications, New YorkGoogle Scholar
  22. Kim K, Fisher JP (2007) Nanoparticle technology in bone tissue engineering. J Drug Targeting 15:241–252CrossRefGoogle Scholar
  23. Kisailus D, Najarian M, Weaver JC, Morse DE (2005) Functionalized gold nanoparticles mimic catalytic activity of a polysiloxane-synthesizing enzyme. Adv Mater 17:1234–1239CrossRefGoogle Scholar
  24. Kuther J, Seshadri R, Tremel W (1998) Crystallization of calcite spherules around designer nuclei. Angew Chem Int Ed 37:3044–3047CrossRefGoogle Scholar
  25. Lee I, Han SW, Choi HJ, Kim K (2001) Nanoparticle-directed crystallization of calcium carbonate. Adv Mater 13:1617–1620CrossRefGoogle Scholar
  26. Lee I, Han SW, Lee SJ, Choi HJ, Kim K (2002) Formation of patterned continuous calcium carbonate films on self-assembled monolayers via nanoparticle-directed crystallization. Adv Mater 14:1640–1643CrossRefGoogle Scholar
  27. Leontowich AFG, Calver CF, Dasog M, Scott RWJ (2010) Surface properties of water-soluble glycine-cysteamine-protected gold clusters. Langmuir 26:1285–1290CrossRefGoogle Scholar
  28. Li Y, Thula TT, Jee S, Perkins SL, Aparicio C, Douglas EP, Gower LB (2012) Biomimetic mineralization of woven bone-like nanocomposites: role of collagen cross-links. Biomacromolecules 13:49–59CrossRefGoogle Scholar
  29. Liji Sobhana SS, Sundaraseelan J, Sekar S, Sastry TP, Mandal AB (2009) Gelatin–chitosan composite capped gold nanoparticles: a matrix for the growth of hydroxyapatite. J Nanopart Res 11:333–340CrossRefGoogle Scholar
  30. Lowenstam HA (1981) Minerals formed by organisms. Science 2011:1126–1131CrossRefGoogle Scholar
  31. Mann S, Archibald DD, Didymus JM, Douglas T, Heywood BR, Meldrum FC, Reeves NJ (1993) Crystallization at inorganic-organic interfaces: biominerals and biomimetic synthesis. Science 261:1286–1292CrossRefGoogle Scholar
  32. Margolis HC, Beniash E, Fowler CE (2006) Role of macromolecular assembly of enamel matrix proteins in enamel formation. J Dent Res 85:775–793CrossRefGoogle Scholar
  33. Nakatani N, Kozaki D, Masuda W, Nakagoshi N, Hasebe K, Mori M, Tanaka K (2008) Simultaneous spectrophotometric determination of phosphate and silicate ions in river water by using ion-exclusion chromatographic separation and post-column derivatization. Anal Chim Acta 619:110–114CrossRefGoogle Scholar
  34. Ngourn SC, Butts HA, Petty AR, Anderson JE, Gerdon AE (2012) Quartz crystal microbalance analysis of DNA-templated calcium phosphate mineralization. Langmuir 28:12151–12158CrossRefGoogle Scholar
  35. Olszta MJ, Douglas EP, Gower LB (2003) Scanning electron microscopic analysis of the mineralization of Type I collagen via a polymer-induced liquid-precursor (PILP) process. Calcif Tissue Int 72:583–591CrossRefGoogle Scholar
  36. Onuma K, Ito A (1998) Cluster growth model for hydroxyapatite. Chem Mater 10:3346–3351CrossRefGoogle Scholar
  37. Palmer LC, Newcomb CJ, Kaltz SR, Spoerke ED, Stupp SI (2008) Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem Rev 108:4754–4783CrossRefGoogle Scholar
  38. Rautaray D, Kumar PS, Wadgaonkar PP, Sastry M (2004) Highly versatile free-standing nano-gold membranes as scaffolds for the growth of calcium carbonate crystals. Chem Mater 16:988–993CrossRefGoogle Scholar
  39. Rautaray D, Mandal S, Sastry M (2005) Synthesis of hydroxyapatite crystals using amino acid-capped gold nanoparticles as a scaffold. Langmuir 21:5185–5191CrossRefGoogle Scholar
  40. Ross RD, Roeder RK (2011) Binding affinity of surface functionalized gold nanoparticles to hydroxyapatite. J Biomed Mater Res A 99A:58–66CrossRefGoogle Scholar
  41. Sargeant TD, Guler MO, Oppenheimer SM, Mata A, Satcher RL, Dunand DC, Stupp SI (2008) Hybrid bone implants: self-assembly of peptide amphiphile nanofibers within porous titatnium. Biomaterials 29:161–171CrossRefGoogle Scholar
  42. Sarikaya M, Tamerler C, Jen AK-Y, Schulten K, Baneyx F (2003) Molecular biomimetics: nanotechnology through biology. Nat Mater 2:577–585CrossRefGoogle Scholar
  43. Sastry TP, Sundaraseelan J, Swarnalatha K, Liji Sobhana SS, Uma Makheswari M, Sekar S, Mandal AB (2008) Growth of hydroxyapatite on physiologically clotted fibrin capped gold nanoparticles. Nanotechnology 19:245604CrossRefGoogle Scholar
  44. Shenhar R, Rotello VM (2003) Nanoparticles: scaffolds and building blocks. Acc Chem Res 36:549–561CrossRefGoogle Scholar
  45. Simpson CA, Huffman BJ, Gerdon AE, Cliffel DE (2010) Unexpected toxicity of monolayer protected gold clusters eliminated by peg-thiol place exchange reactions. Chem Res Toxicol 23:1608–1616CrossRefGoogle Scholar
  46. Simpson CA, Agrawal AC, Balinski A, Harkness KM, Cliffel DE (2011) Short-chain PEG mix-monolayer protected gold Clusters increase clearance and red blood cell counts. ACS Nano 5:3577–3584CrossRefGoogle Scholar
  47. Templeton AC, Hostetler MJ, Warmoth EK, Chen S, Hartshorn CM, Krishnamurthy VM, Forbes MDE, Murray RW (1998) Gateway reations to diverse, Polyfunctional monolayer-protected gold clusters. J Am Chem Soc 120:4845–4849CrossRefGoogle Scholar
  48. Templeton AC, Chen S, Gross SM, Murray RW (1999a) Water-soluble, isolable gold clusters protected by tiopronin and coenzyme A monolayers. Langmuir 15:66–76CrossRefGoogle Scholar
  49. Templeton AC, Cliffel DE, Murray RW (1999b) Redox and fluorophore functionalization of water-soluble, tiopronin-protected gold clusters. J Am Chem Soc 120:4845–4849CrossRefGoogle Scholar
  50. Templeton AC, Wuelfing WP, Murray RW (2000) Monolayer-protected cluster molecules. Acc Chem Res 33:27–36CrossRefGoogle Scholar
  51. Tkachenko AG, Xie H, Coleman D, Glomm W, Ryan J, Anderson MF, Franzen S, Feldheim DL (2003) Multifunctional gold nanoparticle-peptide complexes for nuclear targeting. J Am Chem Soc 125:4700–4701CrossRefGoogle Scholar
  52. Tsang S, Phu F, Baum MM, Poskrebyshev GA (2007) Determination of phosphate/arsenate by a modified molybdenum blue method and reduction of arsenate by S2O4 2−. Talanta 71:1560–1568CrossRefGoogle Scholar
  53. Uchida M, Kang S, Reichhardt C, Harlen K, Douglas T (2010) The ferritin superfamily: supramolecular templates for materials synthesis. Biochim Biophys Acta 1800:834–845CrossRefGoogle Scholar
  54. Uskokovic V, Li W, Habelitz S (2011) Amelogenin as a promoter of nucleation and crystal growth of apatite. J Cryst Growth 316:106–117CrossRefGoogle Scholar
  55. Vogel GL, Chow LC, Brown WE (1983) A microanalytical procedure for the determination of calcium, phosphate and fluoride in enamel biopsy samples. Caries Res 17:23–31CrossRefGoogle Scholar
  56. Walters MA, Leung YC, Blumenthal NC, LeGeros RZ, Konsker KA (1990) A Raman and infrared spectroscopic investigation of biological hydroxyapatite. J Inorg Biochem 39:193–200CrossRefGoogle Scholar
  57. Wang C-G, Liao J-W, Gou B-D, Huang J, Tang R-K, Tao J-H, Zhang T-L, Wang K (2009) Crystallization at multiple sites inside particles of amorphous calcium phosphate. Cryst Growth Des 9:2620–2626CrossRefGoogle Scholar
  58. Whetten RL, Price RC (2007) Nano-golden order. Science 318:407–408CrossRefGoogle Scholar
  59. White AA, Best SM, Kinloch IA (2007) Hydroxyapatite-carbon nanotube composites for biomedical applications: a review. Int J Appl Ceram Technol 4:1–13CrossRefGoogle Scholar
  60. Wiedemann-Bidlack FB, Kwak S-Y, Beniash E, Yamakoshi Y, Simmer JP, Margolis HC (2011) Effects of phosphorylation on the self-assembly of native full-length porcine amelogenin and its regulations of calcium phosphate formation in vitro. J Struct Biol 173:250–260CrossRefGoogle Scholar
  61. Wuelfing WP, Zamborini FP, Templeton AC, Wen X, Yoon H, Murray RW (2001) Monolayer-protected clusters: molecular precursors to metal films. Chem Mater 13:87–95CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Kayla B. Vasconcellos
    • 1
  • Sean M. McHugh
    • 1
  • Katherine J. Dapsis
    • 1
  • Alexander R. Petty
    • 1
  • Aren E. Gerdon
    • 1
  1. 1.Emmanuel CollegeBostonUSA

Personalised recommendations