Skip to main content
Log in

Direct observation of dynamic events of Au clusters on MgO(100) by HAADF-STEM

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Direct atomic imaging of ultrasmall nanoclusters in three-dimension is challenging, not only because of the low signal to noise ratio, but also of the cluster–probe interaction that is often uncharacterized. Here, we report a study of Au nanoclusters (~3 nm) supported on MgO(100) surface using aberration-corrected scanning transmission electron microscopy. By applying the model-based method on successively acquired images, the number of atoms in the projected atomic columns of a cluster was analyzed, allowing for the reconstruction of its 3D structures. It is found that the total number of atoms within the cluster fluctuated under the intense electron beam and the cluster became strongly elongated along the e-beam illumination direction. This study highlights the importance of atom counting with single atom sensitivity. The reported approach is particularly useful in dealing with practical difficulties associated with the characterization of ultrasmall clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ajayan PM, Marks LD (1989a) Experimental-evidence for quasimelting in small particles. Phys Rev Lett 63(3):279–282

    Article  Google Scholar 

  • Ajayan PM, Marks LD (1989b) Evidence for sinking of small particles into substrates and implications for heterogeneous catalysis. Nature 338(6211):139–141

    Article  Google Scholar 

  • Barnard AS, Young NP, Kirkland AI, van Huis MA, Xu H (2009) Nanogold: a quantitative phase map. ACS Nano 3(6):1431–1436

    Article  Google Scholar 

  • Bruma A, Negreiros FR, Xie S, Tsukuda R, Johnston RL, Fortunelli A, Li ZY (2013) Direct atomic imaging and density functional theory study of the Au24Pd1 cluster catalyst. Nanoscale. doi:10.1039/C3NR01852K

    Google Scholar 

  • Cuenya BR (2010) Synthesis and catalytic properties of metal nanoparticles: size, shape, support, composition, and oxidation state effects. Thin Solid Films 518(12):3127–3150

    Article  Google Scholar 

  • den Dekker AJ, Van Aert S, van den Bos A, Van Dyck D (2005) Maximum likelihood estimation of structure parameters from high resolution electron microscopy images. Part i: a theoretical framework. Ultramicroscopy 104(2):83–106

    Article  Google Scholar 

  • Freund HJ (2002) Clusters and islands on oxides: from catalysis via electronics and magnetism to optics. Surf Sci 500(1–3):271–299

    Article  Google Scholar 

  • Goris B, Van den Bals S, Broek W, Carbo-Argibay E, Gomes-Grana S, Liz-Marzan LM, Van Tendeloo G (2012) Atomic-scale determination of surface facets in gold nanorods. Nat Mater 11:930–935

    Article  Google Scholar 

  • Han Y, He DS, Liu Y, Xie S, Tsukuda T, Li ZY (2012) Size and shape of nanoclusters: single-shot imaging approach. Small 8(15):2361–2364

    Article  Google Scholar 

  • Hartel P, Rose H, Dinges C (1996) Conditions and reasons for incoherent imaging in STEM. Ultramicroscopy 63(2):93–114

    Article  Google Scholar 

  • Haruta M (2004) Gold as a novel catalyst in the 21st century: preparation, working mechanism and applications. Gold Bull 37(1–2):27–36

    Article  Google Scholar 

  • Henry CR (2005) Morphology of supported nanoparticles. Prog Surf Sci 80(3–4):92–116

    Article  Google Scholar 

  • Iijima S, Ichihashi T (1986) Structural instability of ultrafine particles of metals. Phys Rev Lett 56(6):616–619

    Article  Google Scholar 

  • Jones L, Nellist PD (2013) Identifying and correcting scan noise and drift in the scanning transmission electron microscope. Microsc Microanal 2013:1–11

    Google Scholar 

  • Krivanek OL, Chisholm MF, Nicolosi V, Pennycook TJ, Corbin GJ, Dellby N, Murfitt MF, Own CS, Szilagyi ZS, Oxley MP, Pantelides ST, Pennycook SJ (2010) Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464(7288):571–574

    Article  Google Scholar 

  • LeBeau JM, Stemmer S (2008) Experimental quantification of annular dark-field images in scanning transmission electron microscopy. Ultramicroscopy 108(12):1653–1658

    Article  Google Scholar 

  • LeBeau JM, Findlay SD, Allen LJ, Stemmer S (2008) Quantitative atomic resolution scanning transmission electron microscopy. Phys Rev Lett 100:206101

    Article  Google Scholar 

  • LeBeau JM, Findlay SD, Allen LJ, Stemmer S (2010) Standardless atom counting in scanning transmission electron microscopy. Nano Lett 10(11):4405–4408

    Article  Google Scholar 

  • Li ZY, Young NP, Di Vece M, Palomba S, Palmer RE, Bleloch AL, Curley BC, Johnston RL, Jiang J, Yuan J (2008) Three-dimensional atomic-scale structure of size-selected gold nanoclusters. Nature 451(7174):46–48

    Article  Google Scholar 

  • Liu Y, Jia CJ, Yamasaki J, Terasaki O, Schuth F (2010) Highly active iron oxide supported gold catalysts for CO oxidation: how small must the gold nanoparticles be? Angew Chem Int Ed 49(33):5771–5775

    Article  Google Scholar 

  • Lopez N, Janssens TVW, Clausen BS, Xu Y, Mavrikakis M, Bligaard T, Norskov JK (2004) On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. J Catal 223(1):232–235

    Article  Google Scholar 

  • Marks LD (1994) Experimental studies of small-particle structures. Rep Prog Phys 57(6):603–649

    Article  Google Scholar 

  • McLachlan G, Peel D (2000) Finite mixture models. Wiley, New York

    Book  Google Scholar 

  • Nellist PD, Pennycook SJ (2000) The principles and interpretation of annular dark-field Z-contrast imaging. Adv Imaging Electron Phys 113:147–203

    Article  Google Scholar 

  • Pearmain D, Park SJ, Wang ZW, Abdela A, Palmer, Li ZY (2013) Size and shape of industrial Pd catalyst particles using size-selected clusters as mass standards. Appl Phys Lett 102(16):163103

    Article  Google Scholar 

  • Peng LM, Ren G, Ddarev SL, Whelan MJ (1996) Debye–Waller factors and absorptive scattering factors of elemental cyrstals. Acta Cryst A52:456–470

    Article  Google Scholar 

  • Smith DJ, Petfordlong AK, Wallenberg LR, Bovin JO (1986) Dynamic atomic-level rearrangements in small gold particles. Science 233(4766):872–875

    Article  Google Scholar 

  • Turner PS, Bullough TJ, Devenish RW, Maher DM, Humphreys CJ (1990) Nanometer hole formation in MgO using electron-beams. Phil Mag Lett 61(4):181–193

    Article  Google Scholar 

  • Van Aert S, den Dekker AJ, van den Bos A, Van Dyck D, Chen JH (2005) Maximum likelihood estimation of structure parameters from high resolution electron microscopy images. Part ii: a practical example. Ultramicroscopy 104(2):107–125

    Article  Google Scholar 

  • Van Aert S, Batenburg KJ, Rossell MD, Erni R, Van Tendeloo G (2011) Three-dimensional atomic imaging of crystalline nanoparticles. Nature 470(7334):372–375

    Google Scholar 

  • Van Aert S, De Backer A, Martinez GT, Goris B, Bals S, Van Tendeloo G (2013) Procedure to count atoms with trustworthy single-atom sensitivity. Phys Rev B 87:064107

    Article  Google Scholar 

  • Young NP, Li ZY, Chen Y, Palomba S, Di Vece M, Palmer RE (2008) Weighing supported nanoparticles: size-selected clusters as mass standards in nanometrology. Phys Rev Lett 101(24):246103

    Article  Google Scholar 

  • Zhou W, Wachs IE, Kiely CJ (2012) Nanostructural and chemical characterization of supported metal oxide catalysts by aberration corrected analytical electron microscopy. Curr Opin Solid State Mat Sci 16(1):10–22

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support from the EPSRC UK (Grant Number EP/G070326/1). The STEM instrument employed in this research was funded through the Birmingham Science City project “Creating and Characterising Next Generation Advanced Materials” by AWM and ERDF. DSH would like to thank the University of Birmingham and the China Scholarship Council for providing the PhD scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Y. Li.

Additional information

Special Issue Editors: Juan Manuel Rojo, Vasileios Koutsos

This article is part of the topical collection on Nanostructured Materials 2012

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 904 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, Y., He, D.S. & Li, Z.Y. Direct observation of dynamic events of Au clusters on MgO(100) by HAADF-STEM. J Nanopart Res 15, 1941 (2013). https://doi.org/10.1007/s11051-013-1941-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1941-6

Keywords

Navigation