Skip to main content
Log in

Nanosphere-Decorated Tunable Anatase Titania Conic Self-Assemblies

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The evolution of morphology has been a key parameter to modify electronic and physical properties of functional materials. For anatase titania, most research has been focused on tubular and/or mesoporous shapes. In this report, we note our findings of cone-shaped anatase titania self-assemblies grown by anodic oxidation. These individual anatase TiO2 cones are constructed from numerous titania nanospheres. The variation in morphology (base diameter and height) is controlled by varying the electrolyte, the concentration of fluoride, and the applied voltage. The crystallization of the anatase phase and the enlarged surface area is confirmed by various spectroscopic methods (FE-SEM, EDS, and TEM). Through controlling the enhanced surface area and the well-ordered ion passage, the Li+ diffusion rate significantly increases and leads to reversibility (charge–discharge cycle). The CV and EIS results imply structurally modified titania conic self-assemblies which can be a potential lithium intercalation template.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akl AA, Kamal H, Abdel-Hady K (2006) Fabrication and characterization of sputtered titanium dioxide films. Appl Surf Sci 252(24):8651–8656. doi:10.1016/j.apsusc.2005.12.001

    Article  Google Scholar 

  • Albu SP, Kim D, Schmuki P (2008) Growth of aligned TiO2 bamboo-type nanotubes and highly ordered nanolace. Angew Chem Int Ed 47(10):1916–1919. doi:10.1002/anie.200704144

    Article  Google Scholar 

  • Bard AJ, Larry R, Faulkner R (1980) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  • Bernard MC, Cachet H, Falaras P, Hugot-Le Goff A, Kalbac M, Lukes I, Oanh NT, Stergiopoulos T, Arabatzis I (2003) Sensitization of TiO2 by polypyridine dyes: role of the electron donor. J Electrochem Soc 150(3):E155–E164. doi:10.1149/1.1543951

    Article  Google Scholar 

  • Boercker JE, Enahce-Pommer E, Aydil ES (2008) Growth mechanism of titanium dioxide nanowires for dye-sensitized solar cells. Nanotechnology 19(9):095604. doi:10.1088/0957-4484/19/9/095604

    Article  Google Scholar 

  • Brett CMA, Brett AMO (1993) Electrochemistry: principles, methods, and applications. Oxford University Press, New York

    Google Scholar 

  • Castro MRS, Sam ED, Veith M, Oliveira PW (2008) Structure, wettability and photocatalytic activity of CO2 laser sintered TiO2/multi-walled carbon nanotube coatings. Nanotechnology 19(10):105704. doi:10.1088/0957-4484/19/10/105704

    Article  Google Scholar 

  • Chen J, Chen C, Wu C, Lin C, Lai Y, Wang C, Chen H, Vittal R, Ho K (2010) An efficient flexible dye-sensitized solar cell with a photoanode consisting of TiO2 nanoparticle-filled and SrO-coated TiO2 nanotube arrays. J Mater Chem 20(34):7201–7207. doi:10.1039/C0JM00598C

    Article  Google Scholar 

  • Chen R, Hu L, Huo K, Fu J, Ni H, Tang Y, Chu PK (2011) Controllable growth of conical and cylindrical TiO2-carbon core-shell nanofiber arrays and morphologically dependent electrochemical properties. Chem Eur J 17:14552–14558. doi:10.1002/chem.201102219

    Article  Google Scholar 

  • Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kulwar Academic Press/Plenum Publisher, New York

    Book  Google Scholar 

  • Dong B, He B, Chai Y, Liu C (2010) Novel Pt nanocluster/titanium dioxide nanotubes composites for hydrazine oxidation. Mater Chem Phys 120(2–3):404–408. doi:10.1016/j.matchemphys.2009.11.022

    Article  Google Scholar 

  • Fabregat-Santiago F, Garcia-Belmonte G, Bisquert J, Zaban A, Salvador P (2002) Decoupling of transport, charge storage, and interfacial charge transfer in the nanocrystalline TiO2/electrolyte system by impedance methods. J Phys Chem B 106(2):334–339. doi:10.1021/jp0119429

    Article  Google Scholar 

  • Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38. doi:10.1038/238037a0

    Article  Google Scholar 

  • Janáky C, Bencsik G, Rácz Á, Visy C, De Tacconi NR, Chanmancee W, Rajeshwar K (2010) Electrochemical grafting of poly(3,4-ethylenedioxythiophene) into a titanium dioxide nanotube host network. Langmuir 26(16):13697–13702. doi:10.1021/la101300n

    Article  Google Scholar 

  • Jung I, Choi J, Tak Y (2010) Nicekl oxalate nanostructures for supercapacitors. J Mater Chem 20(29):6164–6169. doi:10.1039/C0J00279H

    Article  Google Scholar 

  • Kavan L, Kratochvilová K, Grätzel M (1995) Study of nanocrystalline TiO2 (anatase) electrode in the accumulation regime. J Electroanal Chem 394(1–2):93–102. doi:10/1016/0022-0728(95)03976-N

    Article  Google Scholar 

  • Kim D, Lee K, Roy P, Birajdar BI, Spiecker E, Schmuki P (2009) Guanidinium-modified phthalocyanines as high-affinity G-quadruplex fluorescent probes and transcriptional regulators. Angew Chem Int Ed 48(49):9362–9365. doi:10.1002/anie.200903685

    Article  Google Scholar 

  • Kim J, Zhu K, Yan Y, Perkins CL, Frank AJ (2010) Microstructure and pseudocapacitive properties of electrodes constructed of oriented NiO–TiO2 nanotube arrays. Nano Lett 10(10):4099–4104. doi:10.1021/nl102203s

    Article  Google Scholar 

  • Kim JY, Sekino T, Park DJ, Tanaka SI (2011) Morphology modification of TiO2 nanotubes by controlling the starting material crystallite size for chemical synthesis. J Nanopart Res 13:2319–2327. doi:10.1007/s11051-010-9990-6

    Article  Google Scholar 

  • Krumdiek S, Raj R (1999) Conversion efficiency of alkoxide precursor to oxide films grown by an ultrasonic-assisted, pulsed liquid injection, metalorganic chemical vapour deposition (pulsed-CVD) process. J Am Ceram Soc 82(6):1605–1607. doi:10.1111/j.1151-2916.1999.tb01969x

    Article  Google Scholar 

  • Li F, Zhang L, Metzger RM (1998) On the growth of highly ordered pores in anodized aluminum oxide. Chem Mater 10(9):2470–2480. doi:10.1021/cm980163a

    Article  Google Scholar 

  • Lu L, Zhu Y, Li F, Zhuang W, Chan KY, Lu X (2010) Carbon titania mesoporous composite whisker as stable supercapacitor electrode material. J Mater Chem 20(36):7645–7651. doi:10.1039/C0JM00054J

    Article  Google Scholar 

  • Mahajan VK, Misra M, Raja KS, Mohapatra SK (2008) Self-organized TiO2 nanotubular arrays for photoelectrochemical hydrogen generation: effect of crystallization and defect structures. J Phys D 41(12):125307. doi:10/1088/0022-3727/41/12/125307

    Article  Google Scholar 

  • Meekins BH, Kamat PV (2009) Got TiO2 nanotubes? Lithium ion intercalation can boost their photoelectrochemical performance. ACS Nano 3(11):3437–3446. doi:10.1021/nn900897r

    Article  Google Scholar 

  • Meng X, Qi L, Xiao Z, Gong S, Wei Q, Liu Y, Yang M, Wang F (2012) Facile synthesis of direct sunlight-driven anatase TiO2 nanoparticles by in situ modification with trifluoroacetic acid. J Nanopart Res 14:1176. doi:10.1007/s11051-012-1176-y

    Article  Google Scholar 

  • Ng CJW, Gao H, Tan TTY (2008) Atomic layer deposition of TiO2 nanostructures for self-cleaning applications. Nanotechnology 19(44):445604. doi:10.1088/0957-4484/19/44/445603

    Article  Google Scholar 

  • Pan X, Chen C, Zhu K, Fan Z (2011) TiO2 nanotubes infiltrated with nanoparticles for dye sensitized solar cells. Nanotechnology 22(23):235402. doi:10.1088/0957-4484/22/23/235402

    Article  Google Scholar 

  • Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407(6803):496–501. doi:10.1038/35035045

    Article  Google Scholar 

  • Reddy ALM, Ramaprabhu S (2007) Nanocrystalline metal oxides dispersed multiwalled carbon nanotubes as supercapacitor electrodes. J Phys Chem C 111(21):7727–7734. doi:10.1021/jp069006m

    Article  Google Scholar 

  • Sosnowchik BD, Chiamori HC, Ding Y, Ha J, Wang ZL, Lin L (2010) Titanium dioxide nanoswords with highly reactive, photocatalytic facets. Nanotechnology 21(48):485601. doi:10.1088/0957-4484/21/48/485504

    Article  Google Scholar 

  • Štengl V, Bakardjieva S, Murafa N, Večerniková E, Šubrt J, Balek V (2007) Preparation and characterization of titania based nanowires. J Nanopart Res 9:455–470. doi:10.1007/s11051-006-9125-2

    Article  Google Scholar 

  • Taylor CJ, Gilmer DC, Colombo DG, Wilk GD, Campbell SA, Roberts J, Gladfelter WL (1999) Does chemistry really matter in the chemical vapour deposition of titanium dioxide? Precursor and kinetic effects on the microstructure of polycrystalline films. J Am Chem Soc 121(22):5220–5229. doi:10.1021/ja984446f

    Article  Google Scholar 

  • Verma A, Agnihotry SA (2007) Thermal treatment effect on nanostructured TiO2 films deposited using diethanolamine stabilized precursor sol. Electrochim Acta 52(7):2701–2709. doi:10.1016/j.electacta.2006.09.036

    Article  Google Scholar 

  • Wang Z, Hu X (1999) Fabrication and electrochromic properties of spin-coated TiO2 thin films from peroxo-polytitanic acid. Thin Solid Films 352(1):62–65. doi:10.1016/S0040-6090(99)00321-1

    Article  Google Scholar 

  • Wang D, Fang H, Li F, Chen Z, Zhong Q, Qing G, Cheng H (2008) Aligned titania nanotubes as an intercalation anode material for hybrid electrochemical energy storage. Adv Funct Mater 18(23):3787–3793. doi:10.1002/adfm.200800635

    Article  Google Scholar 

  • Wang Y, Gao B, Morales VL, Tian Y, Wu L, Gao J, Bai W, Yang L (2012) Transport of titanium dioxide nanoparticles in saturated porous media under various solution chemistry conditions. J Nanopart Res 14:1095. doi:10.1007/s11051-012-1095-y

    Article  Google Scholar 

  • Wei T, Wan C, Wang Y, Chen C, Shiu H (2007) Immobilization of poly(n-vinyl-2-pyrrolidone)-capped platinum nanoclusters on indium-tin oxide glass and its application in dye-sensitized solar cells. J Phys Chem C 111(12):4847–4853. doi:10.1021/jp067501c

    Article  Google Scholar 

  • Yang X, Jin C, Liang C, Chen D, Wu M, Yu JC (2011) Nanoflower arrays of rutile TiO2. Chem Commun 47:1184–1186. doi:10.1039/c0cc04216a

    Article  Google Scholar 

  • Yu IG, Kim YJ, Kim HJ, Lee C, Lee WI (2011) Size-dependent light-scattering effects of nanoporous TiO2 spheres in dye-sensitized solar cell. J Mater Chem 21:532–538. doi:10.1039/C0JM02606A

    Article  Google Scholar 

  • Zhang BJ, Kim K (2012) Anodic-biased titania nanotube growth in low-dielectric viscous media. Int J Smart Nano Mater. i-print: 1–8. doi:10.1080/19475411.2012.662537

Download references

Acknowledgments

The authors acknowledge the partial financial support from the U.S. Department of Energy

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang Jin Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, B.J., Kim, K.J. & Lee, D.Y. Nanosphere-Decorated Tunable Anatase Titania Conic Self-Assemblies. J Nanopart Res 15, 1837 (2013). https://doi.org/10.1007/s11051-013-1837-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1837-5

Keywords

Navigation