Journal of Nanoparticle Research

, 15:1837 | Cite as

Nanosphere-Decorated Tunable Anatase Titania Conic Self-Assemblies

Research Paper
  • 131 Downloads

Abstract

The evolution of morphology has been a key parameter to modify electronic and physical properties of functional materials. For anatase titania, most research has been focused on tubular and/or mesoporous shapes. In this report, we note our findings of cone-shaped anatase titania self-assemblies grown by anodic oxidation. These individual anatase TiO2 cones are constructed from numerous titania nanospheres. The variation in morphology (base diameter and height) is controlled by varying the electrolyte, the concentration of fluoride, and the applied voltage. The crystallization of the anatase phase and the enlarged surface area is confirmed by various spectroscopic methods (FE-SEM, EDS, and TEM). Through controlling the enhanced surface area and the well-ordered ion passage, the Li+ diffusion rate significantly increases and leads to reversibility (charge–discharge cycle). The CV and EIS results imply structurally modified titania conic self-assemblies which can be a potential lithium intercalation template.

Keywords

Titanium dioxide Morphology Solution chemistry Crystallinity Electrochemistry 

References

  1. Akl AA, Kamal H, Abdel-Hady K (2006) Fabrication and characterization of sputtered titanium dioxide films. Appl Surf Sci 252(24):8651–8656. doi:10.1016/j.apsusc.2005.12.001 CrossRefGoogle Scholar
  2. Albu SP, Kim D, Schmuki P (2008) Growth of aligned TiO2 bamboo-type nanotubes and highly ordered nanolace. Angew Chem Int Ed 47(10):1916–1919. doi:10.1002/anie.200704144 CrossRefGoogle Scholar
  3. Bard AJ, Larry R, Faulkner R (1980) Electrochemical methods: fundamentals and applications. Wiley, New YorkGoogle Scholar
  4. Bernard MC, Cachet H, Falaras P, Hugot-Le Goff A, Kalbac M, Lukes I, Oanh NT, Stergiopoulos T, Arabatzis I (2003) Sensitization of TiO2 by polypyridine dyes: role of the electron donor. J Electrochem Soc 150(3):E155–E164. doi:10.1149/1.1543951 CrossRefGoogle Scholar
  5. Boercker JE, Enahce-Pommer E, Aydil ES (2008) Growth mechanism of titanium dioxide nanowires for dye-sensitized solar cells. Nanotechnology 19(9):095604. doi:10.1088/0957-4484/19/9/095604 CrossRefGoogle Scholar
  6. Brett CMA, Brett AMO (1993) Electrochemistry: principles, methods, and applications. Oxford University Press, New YorkGoogle Scholar
  7. Castro MRS, Sam ED, Veith M, Oliveira PW (2008) Structure, wettability and photocatalytic activity of CO2 laser sintered TiO2/multi-walled carbon nanotube coatings. Nanotechnology 19(10):105704. doi:10.1088/0957-4484/19/10/105704 CrossRefGoogle Scholar
  8. Chen J, Chen C, Wu C, Lin C, Lai Y, Wang C, Chen H, Vittal R, Ho K (2010) An efficient flexible dye-sensitized solar cell with a photoanode consisting of TiO2 nanoparticle-filled and SrO-coated TiO2 nanotube arrays. J Mater Chem 20(34):7201–7207. doi:10.1039/C0JM00598C CrossRefGoogle Scholar
  9. Chen R, Hu L, Huo K, Fu J, Ni H, Tang Y, Chu PK (2011) Controllable growth of conical and cylindrical TiO2-carbon core-shell nanofiber arrays and morphologically dependent electrochemical properties. Chem Eur J 17:14552–14558. doi:10.1002/chem.201102219 CrossRefGoogle Scholar
  10. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kulwar Academic Press/Plenum Publisher, New YorkCrossRefGoogle Scholar
  11. Dong B, He B, Chai Y, Liu C (2010) Novel Pt nanocluster/titanium dioxide nanotubes composites for hydrazine oxidation. Mater Chem Phys 120(2–3):404–408. doi:10.1016/j.matchemphys.2009.11.022 CrossRefGoogle Scholar
  12. Fabregat-Santiago F, Garcia-Belmonte G, Bisquert J, Zaban A, Salvador P (2002) Decoupling of transport, charge storage, and interfacial charge transfer in the nanocrystalline TiO2/electrolyte system by impedance methods. J Phys Chem B 106(2):334–339. doi:10.1021/jp0119429 CrossRefGoogle Scholar
  13. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38. doi:10.1038/238037a0 CrossRefGoogle Scholar
  14. Janáky C, Bencsik G, Rácz Á, Visy C, De Tacconi NR, Chanmancee W, Rajeshwar K (2010) Electrochemical grafting of poly(3,4-ethylenedioxythiophene) into a titanium dioxide nanotube host network. Langmuir 26(16):13697–13702. doi:10.1021/la101300n CrossRefGoogle Scholar
  15. Jung I, Choi J, Tak Y (2010) Nicekl oxalate nanostructures for supercapacitors. J Mater Chem 20(29):6164–6169. doi:10.1039/C0J00279H CrossRefGoogle Scholar
  16. Kavan L, Kratochvilová K, Grätzel M (1995) Study of nanocrystalline TiO2 (anatase) electrode in the accumulation regime. J Electroanal Chem 394(1–2):93–102. doi:10/1016/0022-0728(95)03976-N CrossRefGoogle Scholar
  17. Kim D, Lee K, Roy P, Birajdar BI, Spiecker E, Schmuki P (2009) Guanidinium-modified phthalocyanines as high-affinity G-quadruplex fluorescent probes and transcriptional regulators. Angew Chem Int Ed 48(49):9362–9365. doi:10.1002/anie.200903685 CrossRefGoogle Scholar
  18. Kim J, Zhu K, Yan Y, Perkins CL, Frank AJ (2010) Microstructure and pseudocapacitive properties of electrodes constructed of oriented NiO–TiO2 nanotube arrays. Nano Lett 10(10):4099–4104. doi:10.1021/nl102203s CrossRefGoogle Scholar
  19. Kim JY, Sekino T, Park DJ, Tanaka SI (2011) Morphology modification of TiO2 nanotubes by controlling the starting material crystallite size for chemical synthesis. J Nanopart Res 13:2319–2327. doi:10.1007/s11051-010-9990-6 CrossRefGoogle Scholar
  20. Krumdiek S, Raj R (1999) Conversion efficiency of alkoxide precursor to oxide films grown by an ultrasonic-assisted, pulsed liquid injection, metalorganic chemical vapour deposition (pulsed-CVD) process. J Am Ceram Soc 82(6):1605–1607. doi:10.1111/j.1151-2916.1999.tb01969x CrossRefGoogle Scholar
  21. Li F, Zhang L, Metzger RM (1998) On the growth of highly ordered pores in anodized aluminum oxide. Chem Mater 10(9):2470–2480. doi:10.1021/cm980163a CrossRefGoogle Scholar
  22. Lu L, Zhu Y, Li F, Zhuang W, Chan KY, Lu X (2010) Carbon titania mesoporous composite whisker as stable supercapacitor electrode material. J Mater Chem 20(36):7645–7651. doi:10.1039/C0JM00054J CrossRefGoogle Scholar
  23. Mahajan VK, Misra M, Raja KS, Mohapatra SK (2008) Self-organized TiO2 nanotubular arrays for photoelectrochemical hydrogen generation: effect of crystallization and defect structures. J Phys D 41(12):125307. doi:10/1088/0022-3727/41/12/125307 CrossRefGoogle Scholar
  24. Meekins BH, Kamat PV (2009) Got TiO2 nanotubes? Lithium ion intercalation can boost their photoelectrochemical performance. ACS Nano 3(11):3437–3446. doi:10.1021/nn900897r CrossRefGoogle Scholar
  25. Meng X, Qi L, Xiao Z, Gong S, Wei Q, Liu Y, Yang M, Wang F (2012) Facile synthesis of direct sunlight-driven anatase TiO2 nanoparticles by in situ modification with trifluoroacetic acid. J Nanopart Res 14:1176. doi:10.1007/s11051-012-1176-y CrossRefGoogle Scholar
  26. Ng CJW, Gao H, Tan TTY (2008) Atomic layer deposition of TiO2 nanostructures for self-cleaning applications. Nanotechnology 19(44):445604. doi:10.1088/0957-4484/19/44/445603 CrossRefGoogle Scholar
  27. Pan X, Chen C, Zhu K, Fan Z (2011) TiO2 nanotubes infiltrated with nanoparticles for dye sensitized solar cells. Nanotechnology 22(23):235402. doi:10.1088/0957-4484/22/23/235402 CrossRefGoogle Scholar
  28. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407(6803):496–501. doi:10.1038/35035045 CrossRefGoogle Scholar
  29. Reddy ALM, Ramaprabhu S (2007) Nanocrystalline metal oxides dispersed multiwalled carbon nanotubes as supercapacitor electrodes. J Phys Chem C 111(21):7727–7734. doi:10.1021/jp069006m CrossRefGoogle Scholar
  30. Sosnowchik BD, Chiamori HC, Ding Y, Ha J, Wang ZL, Lin L (2010) Titanium dioxide nanoswords with highly reactive, photocatalytic facets. Nanotechnology 21(48):485601. doi:10.1088/0957-4484/21/48/485504 CrossRefGoogle Scholar
  31. Štengl V, Bakardjieva S, Murafa N, Večerniková E, Šubrt J, Balek V (2007) Preparation and characterization of titania based nanowires. J Nanopart Res 9:455–470. doi:10.1007/s11051-006-9125-2 CrossRefGoogle Scholar
  32. Taylor CJ, Gilmer DC, Colombo DG, Wilk GD, Campbell SA, Roberts J, Gladfelter WL (1999) Does chemistry really matter in the chemical vapour deposition of titanium dioxide? Precursor and kinetic effects on the microstructure of polycrystalline films. J Am Chem Soc 121(22):5220–5229. doi:10.1021/ja984446f CrossRefGoogle Scholar
  33. Verma A, Agnihotry SA (2007) Thermal treatment effect on nanostructured TiO2 films deposited using diethanolamine stabilized precursor sol. Electrochim Acta 52(7):2701–2709. doi:10.1016/j.electacta.2006.09.036 CrossRefGoogle Scholar
  34. Wang Z, Hu X (1999) Fabrication and electrochromic properties of spin-coated TiO2 thin films from peroxo-polytitanic acid. Thin Solid Films 352(1):62–65. doi:10.1016/S0040-6090(99)00321-1 CrossRefGoogle Scholar
  35. Wang D, Fang H, Li F, Chen Z, Zhong Q, Qing G, Cheng H (2008) Aligned titania nanotubes as an intercalation anode material for hybrid electrochemical energy storage. Adv Funct Mater 18(23):3787–3793. doi:10.1002/adfm.200800635 CrossRefGoogle Scholar
  36. Wang Y, Gao B, Morales VL, Tian Y, Wu L, Gao J, Bai W, Yang L (2012) Transport of titanium dioxide nanoparticles in saturated porous media under various solution chemistry conditions. J Nanopart Res 14:1095. doi:10.1007/s11051-012-1095-y CrossRefGoogle Scholar
  37. Wei T, Wan C, Wang Y, Chen C, Shiu H (2007) Immobilization of poly(n-vinyl-2-pyrrolidone)-capped platinum nanoclusters on indium-tin oxide glass and its application in dye-sensitized solar cells. J Phys Chem C 111(12):4847–4853. doi:10.1021/jp067501c CrossRefGoogle Scholar
  38. Yang X, Jin C, Liang C, Chen D, Wu M, Yu JC (2011) Nanoflower arrays of rutile TiO2. Chem Commun 47:1184–1186. doi:10.1039/c0cc04216a CrossRefGoogle Scholar
  39. Yu IG, Kim YJ, Kim HJ, Lee C, Lee WI (2011) Size-dependent light-scattering effects of nanoporous TiO2 spheres in dye-sensitized solar cell. J Mater Chem 21:532–538. doi:10.1039/C0JM02606A CrossRefGoogle Scholar
  40. Zhang BJ, Kim K (2012) Anodic-biased titania nanotube growth in low-dielectric viscous media. Int J Smart Nano Mater. i-print: 1–8. doi:10.1080/19475411.2012.662537

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Bong June Zhang
    • 1
  • Kwang Jin Kim
    • 1
  • Deuk Yong Lee
    • 2
  1. 1.Low Carbon Green Technology Laboratory, Department of Mechanical Engineering (MS312)University of NevadaRenoUSA
  2. 2.Department of Convergence Biomedical Engineering/Materials EngineeringDaelim UniversityAnyangSouth Korea

Personalised recommendations