Skip to main content

Advertisement

Log in

Biomimetic fabrication of WO3 for water splitting under visible light with high performance

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Inspired by the high light-harvesting properties of typical butterfly wings, ceramic WO3 butterfly wings with hierarchical structures of bio-butterfly wings was fabricated using a template of PapilioParis butterfly wings through a sol–gel method. The effect of calcination temperatures on the structures of the ceramic butterfly wings was investigated and the results showed that the WO3 butterfly wing replica calcined at 550 °C (WO3 replica-550) is a single phase and has a high crystallinity and relatively fine hierarchical structure. The average grain size of WO3 replica-550 and WO3 powder are around 32.6 and 42.2 nm, respectively. Compared with pure WO3 powder, WO3 replica-550 demonstrated a higher light-harvesting capability in the region from 460 to 700 nm and more importantly the higher charge separation rate, as evidenced by electron paramagnetic resonance measurements. Photocatalytic O2 evolutions from water were investigated on the ceramic butterfly wings and pure WO3 powder under visible light (λ > 420 nm). The results showed that the amount of O2 produced from WO3 replica-550 is 50 % higher than that of the pure WO3 powder. The improved photocatalytic performance of WO3 replica-550 is attributed to the quasi-honeycomb structure inherited from the PapilioParis butterfly wings, providing both high light-harvesting efficiency and efficient charge transport through the WO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2
Scheme 3

Similar content being viewed by others

References

  • Abe R, Takata T, Sugihara H, Domen K (2005) Photocatalytic overall water splitting under visible light by TaON and WO3 with an IO3 /I shuttle redox mediator. Chem Commun 0:3829–3831. doi:10.1039/B505646B

    Google Scholar 

  • Arai T, Horiguchi M, Yanagia M, Gunji T, Sugihara H, Sayama K (2008) Complete oxidation of acetaldehyde and toluene over a Pd/WO3 photocatalyst under fluorescent- or visible-light irradiation. Chem Commun 0:5565–5567. doi:10.1039/B811657A

    Google Scholar 

  • Baek Y, Song Y, Yong KJ (2006) A novel heteronanostructure system: hierarchical W nanothorn arrays on WO3 nanowhiskers. Adv Mater 18(23):3105–3110. doi:10.1002/adma.200601021

    Article  CAS  Google Scholar 

  • Bak T, Nowotny J, Rekas M, Sorrell CC (2002) Photo-electrochemical hydrogen generation from water using solar energy. Int J Hydrogen Energy 27(10):991–1022. doi:10.1016/S0360-3199(02)00022-8

    Article  CAS  Google Scholar 

  • Bao NZ, Shen LM, Takata T, Domen K (2008) Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible light. Chem Mater 20(1):110–117. doi:10.1021/cm7029344

    Article  CAS  Google Scholar 

  • Butller MA (1997) Photoelectrolysis and physical properties of the semiconducting electrode WO3. J Appl Phys 48:1914–1920. doi:10.1063/1.323948

    Article  Google Scholar 

  • Chen D, Ye JH (2008) Hierarchical WO3 hollow shells: dendrite, sphere, dumbbell, and their photocatalytic properties. Adv Funct Mater 18(13):1922–1928. doi:10.1002/adfm.200701468

    Article  CAS  Google Scholar 

  • Cheng XF et al (2007) Enhanced photoelectrocatalytic performance of Zn-doped WO3 photocatalysts for nitrite ions degradation under visible light. Chemosphere 68:1976–1984. doi:10.1016/j.chemosphere.2007.02.010

    Article  CAS  Google Scholar 

  • Cui XZ et al (2008) Electrochemical catalytic activity for the hydrogen oxidation of mesoporous WO3 and WO3/C composites. J Mater Chem 18:3575–3580. doi:10.1039/b806115g

    Article  CAS  Google Scholar 

  • Dong Q et al (2006) Biotemplate-directed assembly of porous SnO2 nanoparticles into tubular hierarchical structures. Scripta Mater 55(9):799–802. doi:10.1016/j.scriptamat.2006.07.012

    Article  CAS  Google Scholar 

  • Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38. doi:0.1038/238037a0

    Article  CAS  Google Scholar 

  • Gaillot DP et al (2008) Composite organic- inorganic butterfly scales: production of photonic structures with atomic layer deposition. Phys Rev E 78(3):031922. doi:10.1103/PhysRevE.78.031922

    Article  Google Scholar 

  • Galusha JW, Richey LR, Jorgensen MR, Gardner JS, Bartl MH (2010) Study of natural photonic crystals in beetle scales and their conversion into inorganic structuresvia a sol–gel bio-templating route. J Mater Chem 20:1277–1284. doi:10.1039/b913217

    Article  CAS  Google Scholar 

  • Gu ZJ et al (2006) Controllable assembly of WO3 nanorods/nanowires into hierarchical nanostructures. J Phys Chem B 110(47):23829–23836. doi:10.1021/jp065170y

    Article  CAS  Google Scholar 

  • Huang J, Wang X, Wang Z (2006) Controlled replication of butterfly wings for achieving tunable photonic properties. Nano Lett 6:2325–2331. doi:10.1021/nl061851t

    Article  CAS  Google Scholar 

  • Kato H, Kudo A (2002) Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium. J Phys Chem B 106(19):5029–5034. doi:10.1021/jp0255482

    Article  CAS  Google Scholar 

  • Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38(1):253–278. doi:10.1039/B800489G

    Article  CAS  Google Scholar 

  • Li L, Methira K et al (2010) Enhanced photocatalytic properties in well-ordered mesoporous WO3. Chem Commun 46:7620–7622. doi:10.1039/c0cc01237h

    Article  CAS  Google Scholar 

  • Liu X et al (2010) Replication of butterfly wing in TiO2 with ordered mesopores assembled inside for light harvesting. Mater Lett 64(24):2745–2747. doi:10.1016/j.matlet.2010.08.063

    Article  CAS  Google Scholar 

  • Liu R, Lin YJ et al (2011a) Water splitting by tungsten oxide prepared by atomic layer deposition and decorated with an oxygen-evolving catalyst. Angew Chem 123:519–522. doi:10.1002/ange.201004801

    Article  Google Scholar 

  • Liu HH et al (2011b) Hydrogen evolution via sunlight water splitting on an artificial butterfly wing architecture. Phys Chem Chem Phys 13:10872–13876. doi:10.1039/C1CP20787C

    Article  CAS  Google Scholar 

  • Martin-Palma RJ et al (2008) Biomimetization of butterfly wings by the conformal- evaporated- film-by-rotation technique for photonics. Appl Phys Lett 93:083901. doi:10.1063/1.2973167

    Article  Google Scholar 

  • Oaki Y, Imai H (2006) Room-temperature aqueous synthesis of highly luminescent BaWO4–polymer nanohybrids and their spontaneous conversion to hexagonal WO3 nanosheets. Adv Mater 18(14):1807–1811. doi:10.1002/adma.200600531

    Article  CAS  Google Scholar 

  • Ozin GA, McCaffrey JC, McIntosh DF (1984) Activation of dihydrogen and methane by photoexcited manganese and iron atoms in low temperature matrices. Pure Appl Chem 56:111–128

    Article  CAS  Google Scholar 

  • Rossinyol E et al (2007) Synthesis and characterization of chromium-doped mesoporous tungsten oxide for gas sensing applications. Adv Funct Mater 17(11):1801–1806. doi:10.1002/adfm.200600722

    Article  CAS  Google Scholar 

  • Sadakane M et al (2010) Preparation of 3-D ordered macroporous tungsten oxides and nano-crystalline particulate tungsten oxides using a colloidal crystal template method, and their structural characterization and application as photocatalysts under visible light irradiation. J Mater Chem 20(9):1811–1818. doi:10.1039/b922416e

    Article  CAS  Google Scholar 

  • Sayama K, Yoshida R, Kusama H, Okabe K, Abe Y (1997) Photocatalytic decomposition of water into H2 and O2 by a two-step photoexcitation reaction using a WO3 suspension catalyst and an Fe3+/Fe2+ redox system. Chem Phys Lett 277(4):387–391. doi:10.1016/S0009-2614(97)00903-2

    Article  CAS  Google Scholar 

  • Sheoran A et al (2011) Effect of WO3 on EPR, structure and electrical conductivity of vanadyl doped WO3–M2O–B2O3 (M = Li, Na) glasses. Phys B 406:4505–4511

    Article  CAS  Google Scholar 

  • Silva LD et al (2005) Natural and nanoengineered chiral reflectors: structural color of manuka beetles and titania coatings. Electromagnetics 25(5):391–408. doi:10.1080/02726340590957399

    Article  Google Scholar 

  • Silva CG, Bouizi Y, Fornes V, Garcia H (2009) Layered double hydroxides as highly efficient photocatalysts for visible light oxygen generation from water. J Am Chem Soc 131(38):13833–13839. doi:10.1021/ja905467v

    Article  Google Scholar 

  • Takeuchi M et al (2011) Preparation of the visible light responsive N3− doped WO3 photocatalyst by a thermal decomposition of ammonium paratungstate. Appl Catal B Environ 110:1–5. doi:10.1016/j.apcatb.2011.08.004

    Article  CAS  Google Scholar 

  • Tauc J (1970) Absorption edge and internal electric fields in amorphous semiconductors. Mater Res Bull 5:721–729. doi:10.1016/0025-5408(70)90112-1

    Article  CAS  Google Scholar 

  • Thangala J, Vaddiraju S, Bogale R, Thruman R, Powers T, Deb B, Sunkara MK (2007) Large-scale, hot-filament-assisted synthesis of tungsten oxide and related transition metal oxide nanowires. Small 3(5):890–896. doi:10.1002/smll.200600689

    Article  CAS  Google Scholar 

  • Tong HX et al (2009) Preparation, characterization and photo-catalytic behavior of WO3–TiO2 catalysts with oxygen vacancies. Trans Nonferrous Met Soc China 19:1483–1488. doi:10.3866/PKU.WHXB20001108

    Article  Google Scholar 

  • Wang D, Ye J, Kako T, Kimura T (2006) Photophysical and photocatalytic properties of SrTiO3 doped with Cr cations on different sites. J Phys Chem B 110(32):15824–15830. doi:10.1021/jp062487p

    Article  CAS  Google Scholar 

  • Wang ZX, Zhou SX, Wu LM (2007) Preparation of rectangular WO3·H2O nanotubes under mild conditions. Adv Funct Mater 17(11):1790–1794. doi:10.1002/adfm.200601195

    Article  CAS  Google Scholar 

  • Wang FG, Valentin DC, Pacchioni G (2012) Doping of WO3 for photocatalytic water splitting: hints from density functional theory. J Phys Chem C 116(16):8901–8909. doi:10.1021/jp300867j

    Article  CAS  Google Scholar 

  • Watanabe K, Hoshino T, Kanda K, Haruyama Y, Matsui S (2005) Brilliant blue observation from a morphobutterfly-scale quasi-structure. Jpn J Appl Phys 44:48–50. doi:10.1143/JJAP.44.L48

    Article  Google Scholar 

  • Weatherspoon MR et al (2008) 3D rutile titania-based structures with morpho butterfly wing scale morphologies. Angew Chem Int Ed 47(41):7921–7923. doi:10.1002/anie.200801311

    Article  CAS  Google Scholar 

  • Xie YP et al (2012) Crystal facet-dependent photocatalytic oxidation and reduction reactivity of monoclinic WO3 for solar energy conversion. J Mater Chem 22:6746–6751. doi:10.1039/C2JM16178H

    Article  CAS  Google Scholar 

  • Yamaguchi Y, Yamazaki M, Yoshihara S, Shirakashi T (1998) Photocatalytic ZnO films prepared by anodizing. J Electroanal Chem 442(1–2):1–3

    CAS  Google Scholar 

  • Yoshioka S, Kinoshita S (2006) Structural or pigmentary? Origin of the distinctive white stripe on the blue wing of a morpho butterfly. Proc R Soc B 273:129–134. doi:10.1098/rspb.2005.3314

    Article  Google Scholar 

  • Zhang W et al (2006) Fabrication of ZnO microtubes with adjustable nanopores on the walls by the templating of butterfly wing scales. Nanotechnology 17:840–844. doi:10.1088/0957-4484/17/3/038

    Article  CAS  Google Scholar 

  • Zhou J et al (2005) Three-dimensional tungsten oxide nanowire networks. Adv Mater 17(16):2107–2110. doi:10.1002/adma.200500885

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support for this research from the National Science Foundation of China (Nos. 51072117, 51171110), National Basic Research Program of China (973 Program, 2012CB619600), Shanghai Science and Technology Committee (0JC1407600, 13JC1403300) and the Research Fund for the Doctoral Program of Higher Education of China (20120073130001). We also thank the Shanghai Jiao Tong University (SJTU) Instrument Analysis Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shenmin Zhu or Di Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11051_2013_1812_MOESM1_ESM.docx

Electronic Supplementary Information (ESI) available: See DOI: 10.1039/b000000x/(DOCX 141 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, C., Zhu, S., Yao, F. et al. Biomimetic fabrication of WO3 for water splitting under visible light with high performance. J Nanopart Res 15, 1812 (2013). https://doi.org/10.1007/s11051-013-1812-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1812-1

Keywords

Navigation