Skip to main content

Single-bilayer graphene oxide sheet tolerance and glutathione redox system significance assessment in faba bean (Vicia faba L.)

Abstract

Adsorbents based on single-bilayer graphene oxide sheet (hereafter termed “graphene oxide”) are widely used in contaminated environments cleanup which may easily open the avenues for their entry to different environmental compartments, exposure to organisms and their subsequent transfer to human/animal food chain. Considering a common food crop—faba bean (Vicia faba L.) germinating seedlings as a model plant system, this study assesses the V. faba-tolerance to different concentrations (0, 100, 200, 400, 800, and 1600 mg L−1) of graphene oxide (0.5–5 μm) and evaluates glutathione (γ-glutamyl-cysteinyl-glycine) redox system significance in this context. The results showed significantly increased V. faba sensitivity under three graphene oxide concentrations (in order of impact: 1,600 > 200 > 100 mg graphene oxide L−1), which was accompanied by decreased glutathione redox (reduced glutathione-to-oxidized glutathione) ratio, reduced glutathione pool, as well as significant and equally elevated activities of glutathione-regenerating (glutathione reductase) and glutathione-metabolizing (glutathione peroxidase; glutathione sulfo-transferase) enzymes. Contrarily, the two graphene oxide concentrations (in order of impact: 800 > 400 graphene oxide mg L−1) yielded promising results; where, significant improvements in V. faba health status (measured as increased graphene oxide tolerance) were clearly perceptible with increased ratio of the reduced glutathione-to-oxidized glutathione, reduced glutathione pool and glutathione reductase activity but decreased activities of glutathione-metabolizing enzymes. It is inferred that V. faba seedlings-sensitivity and/or tolerance to graphene oxide concentrations depends on both the cellular redox state (reduced glutathione-to-oxidized glutathione ratio) and the reduced glutathione pool which in turn are controlled by a finely tuned modulation of the coordination between glutathione-regenerating and glutathione-metabolizing enzymes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Ahsan N, Lee SH, Lee DG, Lee H, Lee SW, Bahk JD, Lee BH (2007) Physiological and protein profiles alternation of germinating rice seedlings exposed to acute cadmium toxicity. C R Biol 330:735–746

    Article  CAS  Google Scholar 

  • Anderson ME (1985) Determination of glutathione and glutathione disulfides in biological samples. Methods Enzymol 113:548–570

    Article  CAS  Google Scholar 

  • Anjum NA, Umar S, Chan MT (2010) Ascorbate–glutathione pathway and stress tolerance in plants. Springer, The Netherlands

    Book  Google Scholar 

  • Anjum NA, Ahmad I, Mohmood I, Pacheco M, Duarte AC, Pereira E, Umar S, Ahmad A, Khan NA, Iqbal M, Prasad MNV (2012) Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids—a review. Environ Exp Bot 75:307–324

    Google Scholar 

  • Anjum NA, Ahmad I, Rodrigues SM, Henriques B, Cruz N, Coelho C, Pacheco M, Duarte AC, Pereira E (2013) Eriophorum angustifolium and Lolium perenne metabolic adaptations to metals- and metalloids-induced anomalies in the vicinity of a chemical industrial complex. Environ Sci Pollut Res 20:568–581

    Article  CAS  Google Scholar 

  • Bagri A, Mattevi C, Acik M, Chabal YJ, Chhowalla M, Shenoy VB (2010) Structural evolution during the reduction of chemically derived graphene oxide. Nature Chem 2:581–587

    Article  CAS  Google Scholar 

  • Begum P, Ikhtiari R, Fugetsu B (2011) Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon 49:3907–3919

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Chang Y, Yang ST, Liu JH, Dong E, Wang Y, Cao A, Liu Y, Wang H (2011) In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol Lett 200:201–210

    Article  CAS  Google Scholar 

  • Cheng YC, Kaloni TO, Zhu ZY, Schwingenschlögl U (2012) Oxidation of graphene in ozone under ultraviolet light. Appl Phys Lett 101:073110

    Article  Google Scholar 

  • Dimkpa CO, McLean JE, Latta DE, Manangón E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012) CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14:1125

    Article  Google Scholar 

  • Drotar A, Phelphs P, Fall R (1985) Evidence for glutathione peroxidase activities in cultured plant cells. Plant Sci 42:35–40

    Article  CAS  Google Scholar 

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25

    Article  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18

    Article  CAS  Google Scholar 

  • Geim AK (2009) Graphene: status and prospects. Sci 324:1530–1534

    Article  CAS  Google Scholar 

  • Ghosh A, Late DJ, Panchakarla LS, Govindaraj A, Rao CNR (2009) NO2 and humidity sensing characteristics of few-layer graphenes. J Exp Nanosci 4:313–322

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  Google Scholar 

  • Gill SS, Anjum NA, Hasanuzzaman M, Gill R, Trivedi DK, Ahmad I, Pereira E, Tuteja N (2013) Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. Plant Physiol Biochem. doi:10.1016/j.plaphy.2013.05.032

  • Gupta SS, Sreeprasad TS, Maliyekkal SM, Das SK, Pradeep T (2012) Graphene from sugar and its application in water purification. ACS Appl Mater Interf 4:4156–4163

    Article  CAS  Google Scholar 

  • Halušková L, Valentovičová K, Huttová J, Mistrĭk I, Tamás L (2009) Effect of abiotic stresses on glutathione peroxidase and glutathione S-transferase activity in barley root tips. Plant Physiol Biochem 47:1069–1074

    Article  Google Scholar 

  • Huang GY, Wang YS, Sun CC, Dong JD (2010) The effect of multiple heavy metals on ascorbate, glutathione and related enzymes in two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Oceanol Hydrobiol Stud 39:11–25

    Article  CAS  Google Scholar 

  • Kaloni TP, Cheng YC, Faccio R, Schwingenschlögl U (2011) Oxidation of monovacancies in graphene by oxygen molecules. J Mater Chem 21:18284

    Article  CAS  Google Scholar 

  • Krystofova O, Sochor J, Zitka O, Babula P, Kudrle V, Adam V, Kizek R (2013) Effect of magnetic nanoparticles on tobacco BY-2 cell suspension culture. Int J Environ Res Public Health 10:47–71

    Article  CAS  Google Scholar 

  • Kudin KN, Ozbas B, Schniepp HC, Prud’homme RK, Aksay IA, Car R (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8:36–41

    Article  CAS  Google Scholar 

  • Late DJ, Ghosh A, Subrahmanyam K, Panchakarla LS, Krupanidhi SB, Rao CNR (2010) Characteristics of field-effect transistors based on undoped and B- and N-doped few-layer graphenes. Solid State Commun 150:734–738

    Article  CAS  Google Scholar 

  • Late DJ, Ghosh A, Chakraborty B, Sood AK, Waghmare UV, Rao CNR (2011a) Molecular charge-transfer interaction with single-layer graphene. J Exp Nanosci 6:641–651

    Article  CAS  Google Scholar 

  • Late DJ, Maitra U, Panchakarla LS, Waghmare UV, Rao CNR (2011b) Temperature effects on the Raman spectra of graphenes: dependence on the number of layers and doping. J Phys Condens Matter 23:055303

    Article  Google Scholar 

  • Liao KH, Lin YS, Macosko CW, Haynes CL (2011) Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl Mater Interface 3:2607–2615

    Article  CAS  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    Article  CAS  Google Scholar 

  • Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC (2009) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5:1128–1132

    Article  CAS  Google Scholar 

  • Liu X, Zhang S, Shan XQ, Christie P (2007) Combined toxicity of cadmium and arsenate to wheat seedlings and plant uptake and antioxidative enzyme responses to cadmium and arsenate co-contamination. Ecotoxicol Environ Saf 68:305–313

    Article  CAS  Google Scholar 

  • Liu Z, Robinson JT, Sun X, Dai H (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130:10876–10877

    Article  CAS  Google Scholar 

  • Ma XM, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Env 408:3053–3061

    Article  CAS  Google Scholar 

  • Markwiese JT, Ryti RT, Hooten MM, Michael DI, Hlohowskyj I (2001) Toxicity bioassays for ecological risk assessment in arid and semiarid ecosystems. Rev Environ Contam Toxicol 168:43–98

    Article  CAS  Google Scholar 

  • Mohandas J, Marshall JJ, Duggins GG, Horvath JS, Tiller D (1984) Differential distribution of glutathione and glutathione related enzymes in rabbit kidney possible implications in analgesic neuropathy. Cancer Res 44:5086–5091

    CAS  Google Scholar 

  • Mukherjee S, Kaloni TP (2012) Electronic properties of boron- and nitrogen-doped graphene: a first principles study. J Nanopart Res 14:1059

    Article  Google Scholar 

  • Murphy A, Taiz L (1995) A new vertical mesh transfer technique for metal-tolerance studies in Arabidopsis (Ecotypic variation and copper-sensitive mutants). Plant Physiol 108:29–38

    CAS  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicol 17:372–386

    Article  CAS  Google Scholar 

  • Neill S, Desikan R, Hancock J (2002) Hydrogen peroxide signalling. Curr Opinion Plant Biol 5:388–395

    Article  CAS  Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35:454–484

    Article  CAS  Google Scholar 

  • Popelka JC, Terryn N, Higgins TJV (2004) Gene technology for grain legumes: can it contribute to the food challenge in developing countries? Plant Sci 167:195–206

    Article  CAS  Google Scholar 

  • Ramm M, Ata M, Gross T, Unger W (2000) X-ray photoelectron spectroscopy and near-edge X-ray-absorption fine structure of C60 polymer films. Appl Phys A 70:387–390

    Article  CAS  Google Scholar 

  • Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Graphene: the new two-dimensional nanomaterial. Angew Chem Int Ed 48:7752–7777

    Article  CAS  Google Scholar 

  • Rao CNR, Subrahmanyam KS, Matte HSSR, Kumar P, Das B, Hakeem B, Late DJ, Govindaraj A (2010) A study of the synthesis of and properties of graphenes. Sci Technol Adv Mater 11:054502

    Article  Google Scholar 

  • Rausch T, Wachter A (2005) Sulfur metabolism: a versatile platform for launching defence operations. Trend Plant Sci 10:503–509

    Article  CAS  Google Scholar 

  • Reisinger S, Schiavon M, Terry N, Pilon-Smits EAH (2008) Heavy metal tolerance and accumulation in Indian mustard (Brassica juncea L.) expressing bacterial γ-glutamylcysteine synthetase or glutathione synthetase. Int J Phytoremediation 10:1–15

    Article  Google Scholar 

  • Sheehan D, Meade G, Foley VM, Dowd CA (2001) Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 360:1–16

    Article  CAS  Google Scholar 

  • Singh MK, Shokuhfar T, Gracio JJDA, de Sousa ACM, Fereira JMDF, Garmestani H, Ahzi S (2008) Hydroxyapatite modified with carbon-nanotube-reinforced poly(methyl methacrylate): a nanocomposite material for biomedical applications. Adv Funct Mater 18:694–700

    Article  CAS  Google Scholar 

  • Singh SK, Singh MK, Nayak MK, Kumari S, Shrivastava S, Gracio JJA, Dash D (2011) Thrombus inducing property of atomically thin graphene oxide sheets. ACS Nano 5:4987–4996

    Article  CAS  Google Scholar 

  • Singh N, Kaloni TP, Schwingenschlögl U (2013) A first-principles investigation of the optical spectra of oxidized graphene. Appl Phys Lett 102:023101

    Article  Google Scholar 

  • Sreeprasad TS, Maliyekkal SM, Lisha KP, Pradeep T (2011) Reduced graphene oxide-metal/metal oxide composites: facile synthesis and application in water purification. J Hazard Mater 186:921–931

    Article  CAS  Google Scholar 

  • Szalai G, Kellos T, Galiba G, Kocsy G (2009) Glutathione as an antioxidant and regulatory molecule in plants under abiotic stress conditions. J Plant Growth Regul 28:66–80

    Article  CAS  Google Scholar 

  • Taylor JH (1958) The duplication of chromosomes. Sci Am 198:36–42

    Article  CAS  Google Scholar 

  • USEPA (United States Environmental Protection Agency) (1996) US EPA-OPPTS Ecological Effect Test Guideline, 850 Series (850.4200—Seed germination/root elongation toxicity test)

  • Wilkins DA (1957) A technique for the measurement of lead tolerance in plants. Nature 180:37–38

    Article  CAS  Google Scholar 

  • Wu XS, Sprinkle M, Li XB, Ming F, Berger C, de Heer WA (2008) Epitaxial-graphene/graphene-oxide junction: an essential step towards epitaxial graphene electronics. Phys Rev Lett 101:026801

    Article  Google Scholar 

  • Xu C, Wang X (2012) Graphene oxide-mediated synthesis of stable metal nanoparticle colloids. Colloids Surf A 404:78–82

    Article  CAS  Google Scholar 

  • Yang K, Wan J, Zhang S, Zhang Y, Lee S-T, Liu Z (2010) In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano 5:516–522

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial supports received from both FCT (Government of Portugal) through contract (SFRH/BPD/64690/2009; SFRH/BPD/84671/2012) and by the Aveiro University Research Institute/CESAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iqbal Ahmad.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Anjum, N.A., Singh, N., Singh, M.K. et al. Single-bilayer graphene oxide sheet tolerance and glutathione redox system significance assessment in faba bean (Vicia faba L.). J Nanopart Res 15, 1770 (2013). https://doi.org/10.1007/s11051-013-1770-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1770-7

Keywords

  • Graphene oxide
  • Vicia faba
  • Glutathione redox system
  • Tolerance