Skip to main content
Log in

Size and compositionally controlled manganese ferrite nanoparticles with enhanced magnetization

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A facile solvothermal approach was used to synthesize stable, superparamagnetic manganese ferrite nanoparticles with relatively small sizes (<10 nm) and enhanced magnetic features. Tetraethylene glycol has been used in all the syntheses as a biocompatible and stabilizing agent. By varying the oxidation state of manganese precursor, Mn(acac)2 to Mn(acac)3, different sizes, 8 and 5 nm, of MnFe2O4 nanoparticles were obtained respectively, while by tailoring the synthetic conditions iron-rich Mn0.77Fe2.23O4 nanoparticles have been isolated with identical sizes and enhanced saturation magnetization. The magnetization values increased from 58.2 to 68.3 Am2/kg and from 53.3 to 60.2 Am2/kg for the nanoparticles of 8 and 5 nm, respectively. Blocking temperature (T B), ranging from 80 to 180 K, and anisotropy constant (K eff), ranging from 1.5 × 105 to 4.9 × 105 J/m3, were found higher for the iron-rich samples and associated with size and composition effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adireddy S, Lin C et al (2009) Size-controlled synthesis of quasi-monodisperse transition-metal ferrite nanocrystals in fatty alcohol solutions. J Phys Chem C 49:20800–20811

    Article  Google Scholar 

  • Antic B, Kremenovic A et al (2012) Magnetization enhancement and cation valences in nonstoichiometric (MnFe)3−δ nanoparticles. J Appl Phys 111:6–074309

    Article  Google Scholar 

  • Broese Van Groenou A et al (1968) Magnetism, microstructure and crystak chemistry of spinel ferrites. Mater Sci Eng 3:317–392

    Google Scholar 

  • Cao H, Wang G et al (2006) Shape and magnetic properties of single-crystalline hematite (α-Fe2O3) nanocrystals. ChemPhysChem 7:1897–1901

    Article  CAS  Google Scholar 

  • Carta D, Casula MF et al (2009) A structural and magnetic investigation of the inversion degree in ferrite nanocrystals. J Phys Chem C 113:8606–8615

    Article  CAS  Google Scholar 

  • Charles RG, Pawlikowski MA (1958) Comparative heat stabilities of some metal acetylacetonate chelates. J Phys Chem 62:440–444

    Article  CAS  Google Scholar 

  • Chen J, Sorensen C et al (1996) Size-dependent magnetic properties of MnFe2O4 fine particles synthesized by coprecipitation. Phys Rev B 54:9288–9296

    Article  CAS  Google Scholar 

  • Colombo M, Carregal-Romero S et al (2012) Biological applications of magnetic nanoparticles. Chem Soc Rev 41:4306–4334

    Article  CAS  Google Scholar 

  • Cornell RM, Schwertmann U (2000) The iron oxides: structure, properties, reactions, occurrence and uses. Annu Rev Mater Sci 30:545–610

    Article  Google Scholar 

  • Garcia-Otero J, Porto M, Rivas J, Bunde A (2000) Influence of dipolar interaction on magnetic properties of ultrafine ferromagnetic particles. Phys Rev Lett 84:167–170

    Article  CAS  Google Scholar 

  • Gillot B, Laarj M, Kacim S (1997) Reactivity towards oxygen and cation distribution of manganese iron spinel Mn3−x Fe x O4 (0 ≤ x ≤ 3) fine powders studied by thermogravimetry and IR spectroscopy. J Mater Chem 7:827–831

    Article  CAS  Google Scholar 

  • Hergt R, Dutz S, Müller R, Zeisberger M (2006) Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J Phys: Condens Matter 18:2919–2934

    Article  Google Scholar 

  • Hu H, Tian Z et al (2011) Surfactant-controlled morphology and magnetic property of manganese ferrite nanocrystal contrast agent. Nanotechnology 22:7–085707

    Google Scholar 

  • Jang J, Nah H et al (2012) Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. Angew Chem Int Ed 48:1234–1238

    Article  Google Scholar 

  • Jiles D (1991) Introduction to magnetism and magnetic materials. Chapman & Hall.CRC press LLC, Florida

    Book  Google Scholar 

  • Jun Y, Lee J, Cheon J (2008) Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew Chem Int Ed 47:5122–5135

    Article  CAS  Google Scholar 

  • Karakoti AS, Das S, Thevuthasan S, Seal S (2011) PEGylated inorganic nanoparticles. Angew Chem Int Ed 50:1980–1994

    Article  CAS  Google Scholar 

  • Kim D, Zeng H et al (2009) T1 and T2 relaxivities of succimer-coated MFe2O4 (M = Mn2+, Fe2+ and Co2+) inverse spinel ferrites for potential use as phase-contrast agents in medical MRI. J Magn Magn Mater 32:3899–3904

    Article  Google Scholar 

  • Kneller EF, Luborsky FE (1963) Particle-size dependence of coercivity and remanence of single domain particles. J Appl Phys 34:656–658

    Article  CAS  Google Scholar 

  • Kodama RH (1999) Magnetic nanoparticles. J Magn Magn Mater 200:359–372

    Article  CAS  Google Scholar 

  • Köseoglua Y, Alana F, Tana M, Yilginb R, Öztürkb M (2012) Low temperature hydrothermal synthesis and characterization of Mn doped cobalt ferrite nanoparticles. Ceram Int 38:3625–3634

    Article  Google Scholar 

  • Krishnan KM (2010) Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics and therapy. IEEE Trans Magn 46:2523–2558

    Article  CAS  Google Scholar 

  • Kumar P (2010) Magnetic behavior of surface nanostructured 50 nm nickel thin films. Nanoscale Res Lett 5:1596–1602

    Article  CAS  Google Scholar 

  • Kwon SG, Piao Y et al (2007) Kinetics of monodisperse iron oxide nanocrystal formation by “heating-up” process. J Am Chem Soc 129:12571–12584

    Article  CAS  Google Scholar 

  • Li X (2011) Single-crystalline α-Fe2O3 oblique nanoparallelepipeds: High-yield synthesis, growth mechanism and structure enhanced gas-sensing properties. Nanoscale 3:718–724

    Article  CAS  Google Scholar 

  • Li H, Wu H, Xiao G (2010) Effects of synthetic conditions on particle size and magnetic properties of NiFe2O4. Powder Technol 198:157–166

    Article  CAS  Google Scholar 

  • Lima E, Biasi E et al (2010) Surface effects in the magnetic properties of crystalline 3 nm ferrite nanoparticles chemically synthesized. J Appl Phys 108:10–103919

    Google Scholar 

  • Liu C, Zou B et al (2000) Chemical control of superparamagnetic properties of magnesium and cobalt spinel ferrite nanoparticles through atomic level magnetic couplings. J Am Chem Soc 122:6263–6267

    Article  CAS  Google Scholar 

  • Lu A, Salabas E, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244

    Article  CAS  Google Scholar 

  • Néel L (1948) Magnetic properties of ferrites: ferrimagnetism and antiferromagnetism. Ann Phys 3:137–165

    Google Scholar 

  • Neuberger T, Schopf B, Hofmann H et al (2005) Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater 293:483–496

    Article  CAS  Google Scholar 

  • Nlebedim IC, Snyder JE et al (2012) Anisotropy and magnetostriction in non-stoichiometric cobalt ferrite. IEEE Trans Magn 48:3084–3087

    Article  CAS  Google Scholar 

  • Pereira C, Pereira AM et al (2012) Superparamagnetic MFe2O4 (M = Fe, Co, Mn) nanoparticles: tuning the particle size and magnetic properties through a novel one-step coprecipitation route. Chem Mater 24:1496–1504

    Article  CAS  Google Scholar 

  • Rondinone AJ, Liu C et al (2001) Determination of magnetic anisotropy distribution and anisotropy constant of manganese spinel ferrite nanoparticles. J Phys Chem B 105:7967–7971

    Article  CAS  Google Scholar 

  • Salafranca J, Gazquez J et al (2012) Surfactant organic molecules restore magnetism in metal-oxide nanoparticle surfaces. Nano Lett 12:2499–2503

    Article  CAS  Google Scholar 

  • Schmid G (2010) Nanoparticles: from theory to application. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Shim JH, Lee S, Min BI (2007) Abnormal spin structure of manganese ferrite investigated by 57Fe NMR. Phys Rev B 75:5–134406

    Article  Google Scholar 

  • Sickafus K, Wills J, Grimes N (1999) Structure of spinel. J Am Ceram Soc 82:3279–3292

    Article  CAS  Google Scholar 

  • Spaldin N (2003) Magnetic materials: fundamentals and device applications. Cambridge University Press, Cambridge

    Google Scholar 

  • Vargas J, Srivastava A et al (2011) Tuning the thermal relaxation of transition-metal ferrite nanoparticles through their intrinsic magnetocrystalline anisotropy. J Appl Phys 110:064304–064306

    Article  Google Scholar 

  • Verwey E, Heilmann E (1947) Physical properties and cation arrangements of oxides with spinel structures I. Cation arrangement in spinels. J Chem Phys 15:174–180

    Article  CAS  Google Scholar 

  • Vestal CR, Zhang ZJ (2003) Effects of surface coordination chemistry on the magnetic properties of MnFe2O4 spinel ferrite nanoparticles. J Am Chem Soc 125:9828–9833

    Article  CAS  Google Scholar 

  • Waldron RD (1955) Infrared spectra of ferrites. Phys Rev 99:1727–1735

    Article  CAS  Google Scholar 

  • Walton RI (2002) Subcritical solvothermal synthesis of condensed inorganic materials. Chem Soc Rev 31:230–238

    Article  CAS  Google Scholar 

  • Xu B, Wang X (2012) Solvothermal synthesis of monodisperse nanocrystals. Dalton Trans 41:4719–4725

    Article  CAS  Google Scholar 

  • Yang H, Zhang C et al (2010) Water-soluble superparamagnetic manganese ferrite nanoparticles for magnetic resonance imaging. Biomaterials 31:3667–3673

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research has been co-financed by the European Union (European Social Fund—ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)—Research Funding Program: Thales. Investing in knowledge society through the European Social Fund. The authors would like to thank the Assoc. Prof. C. Lioutas for his great assistance in TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Dendrinou-Samara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vamvakidis, K., Sakellari, D., Angelakeris, M. et al. Size and compositionally controlled manganese ferrite nanoparticles with enhanced magnetization. J Nanopart Res 15, 1743 (2013). https://doi.org/10.1007/s11051-013-1743-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1743-x

Keywords

Navigation