Synthesis of CdS nanocrystals in poly(3-hexylthiophene) polymer matrix: optical and structural studies

Research Paper

Abstract

CdS nanocrystals (NCs) were directly synthesized in P3HT matrix by decomposition of single-molecule precursor compound. In this process, a molecular precursor solution was mixed with the polymeric solution. On heating the solution to the decomposition temperature of the precursor compound, NCs were formed in situ at temperatures as low as 120 °C. The effects of the precursor concentration on the optical properties of the composite were studied. The results showed evidence of charge transfer and size variation depending on NCs concentration. CdS phase can be formed using this process at 120 °C temperature as was evident from the X-ray diffraction studies. Transmission electron microscope results confirm formation of monodispersed CdS nanoparticles of average size 4 nm. A possible mechanism of the CdS film formation was also investigated. UV–Vis measurements show that these CdS composites possess a direct band gap energy higher than 2.45 eV depending on the concentration of P3HT, indicating that the nano size can be controlled by the concentration of polymer additive in the composite. A higher concentration of P3HT showed more blue shift.

Keywords

Nanocrystals Polymers Precursor Ligands Composites 

References

  1. Beek WJE, Wienk MM, Janssen RAJ (2006) Hybrid solar cells from regio-regular polythiophene and ZnO nanoparticles. Adv Funct Mater 16:1112–1116CrossRefGoogle Scholar
  2. Borriello C, Masala S, Bizzarro V, Nenna G, Re M, Pesce E, Minarini C, Di luccio t (2011) electroluminescence properties of poly(3-hexylthiophene)-cadmium sulfide nanoparticles grown in situ. J Appl Polym Sci 3624–3629Google Scholar
  3. Coates NE, Zhou H, Kramer S, Li L, Moses D (2010) Solution based in situ synthesis and fabrication of ultrasensitive CdSe photoconductors. Adv Mater 22:5366–5369CrossRefGoogle Scholar
  4. Dayal S, Kopidakis N, Olson DC, Ginley DS, Rumbles G (2009) Direct synthesis of CdSe nanoparticles in poly(3-hexylthiophene). J Am Chem Soc 131:17726–17727CrossRefGoogle Scholar
  5. Dayal S, Kopidakis N, Olson DC, Ginley DS, Rumbles G (2010) Photovoltaic devices with a low bandgap polymer and CdSe nanostructures exceeding 3 % efficiency. Nano Lett 10:239–242CrossRefGoogle Scholar
  6. Di Luccio T, Laera AM, Tapfer L, Kempter S, Kraus R, Nickel B (2006) Controlled nucleation and growth of CdS nanoparticles in a polymer matrix. J Phys Chem B 110:12603–12609CrossRefGoogle Scholar
  7. Dowland S, Lutz T, Ward A, King SP, Sudlow A, Hill MS, Molloy KC, Haque SA (2011) Direct growth of metal sulfide nanoparticle networks in solid state polymer films for hybrid inorganic–organic solar cells. Adv Mater 23:2739–2744CrossRefGoogle Scholar
  8. Greaney MJ, Das S, Webber DH, Bradforth SE, Brutchey RL (2012) Improving open circuit potential in hybrid P3HT:CdS bulk heterojunction solar cells via colloidal tert-butyl thiol ligand exchange. ACS Nano 6:4222–4230CrossRefGoogle Scholar
  9. Greenham NC, Peng X, Alivisatos AP (1996) Charge separation and transport in conjugated polymer/semiconductor nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys Rev B 54:17628–17637CrossRefGoogle Scholar
  10. Habas SE, Platt HAS, Maikel FAM, Van H, Ginley DS (2010) Low cost inorganic solar cells, from inks to printed device. Chem Rev 11:6571–6594CrossRefGoogle Scholar
  11. Han Z, Zhang J, Yang X, Cao W (2011) Synthesis and applications in solar cell of poly(3-octyl thiophene)/cadmium sulfide nanocomposite. Sol Energ Mat Sol C 95:483–490CrossRefGoogle Scholar
  12. Hoppe H, Sariciftci NS (2004) Organic solar cells: an overview. J Mater Res 19:1924–1945CrossRefGoogle Scholar
  13. Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod-polymer solar cells. Science 295:2425–2427CrossRefGoogle Scholar
  14. Jeltsch KF, Schadel M, Bonekamp JB, Niyamakom P, Rauscher F, Lademann HWA, Dumsch I, Allard S, Scherf U, Meerholz K (2012) Efficiency enhanced hybrid solar cells using a blend of quantum dots and nanorods. Adv Funct Mater 22:397–404CrossRefGoogle Scholar
  15. Khan MT, Kaur A, Dhawan SK, Chand S (2011) In situ growth of cadmium telluride nanocrystals in poly(3-hexylthiophene) matrix for photovoltaic applications. J Appl Phys 110:044509-1-044509-7Google Scholar
  16. Laera AM, Resta V, Ferrara MC, Schioppa M, Piscopiello E, Tapfer L (2011) Synthesis of hybrid organic-inorganic nanocomposite materials based on CdS nanocrystals for energy conversion applications. Nanopart Res 13:5705–5717CrossRefGoogle Scholar
  17. Leventis HC, King SP, Sudlow A, Hill MS, Molloy KC, Haque SA (2010) Nanostructured hybrid polymer-inorganic solar cell active layers formed by controllable in situ growth of semiconducting sulfide networks. Nano Lett 10:1253–1258CrossRefGoogle Scholar
  18. Li Y, Ye M, Yang C, Li X, Li Y (2005) Composition and shape controlled synthesis and optical properties of ZnxCd1−xS alloyed nanocrystals. Adv Funct Mater 15:433–441CrossRefGoogle Scholar
  19. Liao HC, Chen SY, Liu DM (2009) In situ growing CdS single crystal nanorods via P3HT polymer as a soft template for enhancing photovoltaic performance. Macromolecules 42:6558–6563CrossRefGoogle Scholar
  20. Liao HC, Lin CC, Chen YW, Liu TC, Chen SY (2010) Improvement in photovoltaic performance for hybrid P3HT/elongated CdS nanocrystals solar cells with F-doped SnO2 arrays. J Mater Chem 20:5429–5435CrossRefGoogle Scholar
  21. Liao HC, Chantarat N, Chen SY, Peng CH (2011) Annealing effect on photovoltaic performance of hybrid P3HT/in-situ grown CdS nanocrystal solar cell. J Electrochem Soc 158(7):E67–E72CrossRefGoogle Scholar
  22. Liu W (2006) Low temperature synthesis of hexagonal phase ZnS nanocrystals by thermolysis of an air stable single source molecular precursor in air. Mater Lett 60:551–554CrossRefGoogle Scholar
  23. Liu J, Wang W, Yu H, Wu Z, Peng J, Cao Y (2008) Surface ligand effect in MEHPPV/TiO2 hybrid solar cells. Sol Energy Mater Sol C 92:1403–1409CrossRefGoogle Scholar
  24. Maier E, Rath T, Hass W, Werzer O, Saf R, Hofer F, Meissner D, Volobujeva O, Bereznev S, Mellikov E, Amenitsch H, Resel R, Trimmel G (2011) CuInS2-poly(3-ethyl-4-butanoate)thiophene nanocomposite solar cells: preparation by an in situ formation route, performance and stability issues. Sol Energy Mater Sol C 95:1354–1361CrossRefGoogle Scholar
  25. Masala S, Gobbo SD, Borriello C, Bizzarro V, Ferrara VL, Pesce E, Minarini C, Crescenzi MD, Di Luccio T (2011) Hybrid polymer–CdS solar cell active layers formed by in situ growth of CdS nanoparticles. J Nanopart Res 13:6537–6544CrossRefGoogle Scholar
  26. Mayukh M, Jung IH, He F, Yu L (2012) Incremental optimization in donor polymers for bulk heterojunction organic solar cells exhibiting high performance. J Polym Sci 50:1057–1070CrossRefGoogle Scholar
  27. Moule AJ, Chang L, Thambidurai C, Vidu R, Stroeve P (2012) Hybrid solar cells, basic principles and role of ligands. J Mater Chem 22:2351–2368CrossRefGoogle Scholar
  28. Nair PS, Radhakrishnan T, Revaprasadu N, Kolawole GA, Brien PO (2002) A novel single source precursor for the preparation of CdS nanoparticles. J Mater Chem 12:2722–2725CrossRefGoogle Scholar
  29. Nair PS, Radhakrishna T, Revaprasadu N, Kolawole GA, Luyt AS, Djokovic VJ (2005) Preparation and characterization of polystyrene films containing PbS nanoparticles. Mater Sci 40:4407–4409CrossRefGoogle Scholar
  30. Plante IJL, Zeid TW, Yang P, Mokari T (2010) Synthesis of metal sulfide nanomaterials via thermal decomposition of single source precursors. J Mater Chem 20:6612–6617CrossRefGoogle Scholar
  31. Pradhan N, Katz B, Efrima S (2003) Synthesis of high-quality metal sulfide nanoparticles from alkyl xanthate single precursors in alkylamine solvents. J Phys Chem B107:13843–13854Google Scholar
  32. Reiss P, Couderc E, Girolamo JD, Pron A (2010) Confined polymers/semiconductor nanocrystals hybrid materials-preparation, electrical transport properties and applications. Nanoscale 3:446–489CrossRefGoogle Scholar
  33. Ren S, Chang LY, Lim SK, Zhao J, Smith M, Ni Z, Bulovic V, Bawendi M, Gradecak S (2011) Inorganic–organic hybrid solar cell: bridging quantum dots to conjugated polymer nanowires. Nano Lett 11:3998–4002CrossRefGoogle Scholar
  34. Resta V, Laera AM, Piscopiello E, Schioppa M, Tapfer L (2010) Highly efficient precursors for direct synthesis of tailored CdS nanocrystals in organic polymers. J Phys Chem C 114:17311–17317CrossRefGoogle Scholar
  35. Saunders BR, Turner ML (2008) Nanoparticle–polymer photovoltaic cell. Adv Colloid Interface Sci 138:1–23CrossRefGoogle Scholar
  36. Shen S, Zhang Y, Peng L, Xu B, Du Y, Deng M, Xu H, Wang Q (2011) Generalized synthesis of metal sulfide nanocrystals from single source precursors: size, shape and chemical composition control and their properties. Crys Eng Commun 13:4572–4579CrossRefGoogle Scholar
  37. Stavrinadis A, Beal R, Smith JM, Assender HE, Watt AAR (2008) Direct formation of PbS nanorods in a conjugated polymer. Adv Mater 20:3105–3109CrossRefGoogle Scholar
  38. Talapin DV, Lee JS, Kovalenko MV, Shevchenko EV (2010) Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev 110:389–458CrossRefGoogle Scholar
  39. Verma D, Rao AR, Dutta V (2009) Surfactant free CdTe nanoparticles mixed MEHPP hybrid solar cell deposited by spin coating technique. Sol Energy Mater Sol C 93(9):1482–1487CrossRefGoogle Scholar
  40. Wang Z, Qu S, Zeng X, Zhang C, Shi M, Tan F, Wang Z, Liu J, Hou Y, Teng F, Feng Z (2008) Synthesis of MDMO-PPV capped PbS quantum dots and their application to solar cells, polymer. Polymer 49(21):4647–4651CrossRefGoogle Scholar
  41. Wang Y, Wei W, Liu X, Gu Y (2012) Research progress on polymer heterojunction solar cells, solar energy materials and solar cells. Sol Energy Mater Sol C 98:129–145CrossRefGoogle Scholar
  42. Warner JH, Watt AAA (2006) Monodisperse PbS nanocrystals synthesized in a conducting polymer. Mater Lett 60:2375–2379CrossRefGoogle Scholar
  43. Zhou Y, Eck M, Kruger M (2010) Bulk-heterojunction hybrid solar cells based on colloidal nanocrystals and conjugated polymers. Energy Environ Sci 3:1851–1864CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Vikash Agrawal
    • 3
  • Kiran Jain
    • 1
  • Leena Arora
    • 2
  • S. Chand
    • 1
  1. 1.Organic and Hybrid Solar Cell GroupNational Physical LaboratoryNew DelhiIndia
  2. 2.Department of PhysicsDelhi Technological UniversityNew DelhiIndia
  3. 3.CSIR-SRF, Organic and Hybrid Solar Cell GroupNational Physical LaboratoryNew DelhiIndia

Personalised recommendations