Skip to main content
Log in

DPPC/poly(2-methyl-2-oxazoline)-grad-poly(2-phenyl-2-oxazoline) chimeric nanostructures as potential drug nanocarriers

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this study, we report on the self assembly behavior and on stability studies of mixed (chimeric) nanosystems consisting of dipalmitoylphosphatidylcholine (DPPC) and poly(2-methyl-2-oxazoline)-grad-poly(2-phenyl-2-oxazoline) (MPOx) gradient copolymer in aqueous media and in fetal bovine serum (FBS). A gamut of light scattering techniques and fluorescence spectroscopy were used in order to extract information on the size and morphological characteristics of the nanoassemblies formed, as a function of gradient block copolymer content, as well as temperature. The hydrodynamic radii (R h) of nanoassemblies decreased in the process of heating up to 50 °C, while the fractal dimension (d f) values, also increased. Indomethacin was successfully incorporated into these chimeric nanocarriers. Drug release was depended on the components ratio. The present studies show that there are a number of parameters that can be used in order to alter the properties of chimeric nanosystems, and this is advantageous to the development of “smart” nanocarriers for drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams N, Schubert U (2007) Poly(2-oxazolines) in biological and biomedical application contexts. Adv Drug Deliv Rev 59:1504–1520

    Article  CAS  Google Scholar 

  • Adams ML, Lavasanifar A, Kwon GS (2003) Amphiphilic block copolymers for drug delivery. J Pharm Sci 92(7):1343–1355

    Article  CAS  Google Scholar 

  • Amado E, Blume A, Kressler J (2009) Novel non-ionic block copolymers tailored for interaction with phospholipids. React Funct Polym 69:450–456

    Article  CAS  Google Scholar 

  • Antunes FE, Marques EF, Miquel MG, Lindman B (2009) Polymer-vesicle association. Adv Colloid Interface Sci 147–148:18–35

    Article  Google Scholar 

  • Arnida Janát-Amsbury MM, Ray A, Peterson CM, Chandehari H (2011) Geometry and surface characteristics of gold nanoparticles influence their distribution and uptake by macrophages. Eur J Pharm Biopharm 77:417–423

    Article  Google Scholar 

  • Balmert SC, Little SR (2012) Biomimetic delivery with micro- and nanoparticles. Adv Mater 24:3757–3778

    Article  CAS  Google Scholar 

  • Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13:238–252

    Article  CAS  Google Scholar 

  • Barz M, Luxenhofer R, Zentelb R, Vicent MJ (2011) Overcoming the PEG-addition: well-defined alternatives to PEF, from structure-property relationships to better defined therapeutics. Polym Chem 2:1900–1918

    Article  CAS  Google Scholar 

  • Burchard W (1983) Static and dynamic light scattering from branched polymers and biopolymers. Adv Polym Sci 48:1–124

    Article  CAS  Google Scholar 

  • Canelas DA, Herlihy KP, DeSimone JM (2009) Top-down particle fabrication: control of size and shape for diagnostic imaging and drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(4):393–404

    Article  Google Scholar 

  • Champion JA, Katare YK, Mitragotri S (2007) Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J Control Release 121:3–9

    Article  CAS  Google Scholar 

  • Dasa AK, Hong PD (2011) Solute–solvent friction kernels and solution properties of methyl oxazoline–phenyl oxazoline (MeOx–PhOx) copolymers in binary ethanol–water mixtures. Phys Chem Chem Phys 13:11892–11904

    Article  Google Scholar 

  • Derjaguin BV, Landau LD (1941) Theory of the stability of strongly charged lyophobic sols and of adhesion of strongly charged particles in solution of electrolytes. Acta Physicochim URRS 14:633–662

    Google Scholar 

  • Dokoumetzidis A, Macheras P (2011) The changing face of the rate concept in biopharmaceutical sciences: from classical to fractal and finally to fractional. Pharm Res 28:1229–1232

    Article  CAS  Google Scholar 

  • Gardikis K, Tsimplouli C, Dimas K, Micha-Screttas M, Demetzos C (2010) New chimeric advanced drug delivery nano system (chi-aDDnSs) as doxorubicin carriers. Int J Pharm 402:231–237

    Article  CAS  Google Scholar 

  • Gregoriadis G, Wills EJ, Swain CP, Tavill AS (1974) Drug-carrier potential of liposomes in cancer chemotherapy. Lancet 1:1313–1316

    Article  CAS  Google Scholar 

  • Hoogenboom R (2009) Poly(2-oxazoline)s: a polymer class with numerous potential applications. Angew Chem Int Ed Engl 48(43):7978–7994

    Article  CAS  Google Scholar 

  • Hoogenboom R, Wiesbrock F, Leenen MA, Meier MA, Schubert US (2005) Accelerating the living polymerization of 2-nonyl-2-oxazoline by implementing o microwave synthesizer into a high-throughput experimentation workflow. J Comb Chem 7(1):10–13

    Article  CAS  Google Scholar 

  • Hoogenboom R, Thijs HML, Fijten MWM, van Lankvelt B, Schubert US (2007) One-pot synthesis of 2-phenyl-2-oxazoline containing quasi diblock copoly(2-oxazoline)s under microwave irradiation. J Polym Sci A 45:416–422

    Article  CAS  Google Scholar 

  • Hoogenboom R, Thijs HML, Wouters D, Hoeppenera S, Schubert US (2008a) Tuning solution polymer properties by binary water–ethanol solvent mixtures. Soft Matter 4:103–107

    Article  CAS  Google Scholar 

  • Hoogenboom R, Thijs HML, Wouters D, Hoeppener S, Schubert US (2008b) Solvent responsive micelles based on block and gradient copoly(2-oxazoline)s. Macromolecules 41(5):1581–1583

    Article  CAS  Google Scholar 

  • Immordino ML, Dosio F, Cattel L (2006) Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 1(3):297–315

    Article  CAS  Google Scholar 

  • Ishida T, Ichihara M, Wang X, Yamamoto K, Kimura J, Majima E, Kiwada H (2006) Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is responsible for rapid elimination of second dose of PEGylated liposomes. J Control Release 112(1):15–25

    Article  CAS  Google Scholar 

  • Kanniah V, Wu P, Mandzy Grulke EA (2012) Fractal analysis as a complimentary technique for characterizing nanoparticle size distributions. Powder Technol 226:189–198

    Article  CAS  Google Scholar 

  • Kataoka K, Kwon GS, Yokoyama M, Okano T, Sakurai Y (1993) Block-copolymer micelles as vesicles for drug delivery. J Control Release 24:119–132

    Article  CAS  Google Scholar 

  • Kataoka K, Harada A, Nagasaki Y (2001) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 47(1):113–131

    Article  CAS  Google Scholar 

  • Kempe K, Lobert M, Hoogenboom R, Schubert US (2009) Synthesis and characterization a series of diverse poly(2-oxazoline)s. J Polym Sci A 47(15):3829–3838

    Article  CAS  Google Scholar 

  • Knop K, Hoogenboom R, Fischer D, Schubert US (2010) Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed Engl 49:6288–6308

    Article  CAS  Google Scholar 

  • Kono K (2001) Thermosensitive polymer-modified liposomes. Adv Drug Deliv Rev 53:307–319

    Article  CAS  Google Scholar 

  • Kono K, Nakai R, Morimoto K, Takagishi T (1999a) Thermosensitive polymer-modified liposomes that release contents around physiological temperature. Biochim Biophys Acta 1416:239–250

    Article  CAS  Google Scholar 

  • Kono K, Henmi A, Yamashita H, Hayashi H, Takagishi T (1999b) Improvement of temperature-sensitivity of poly(N-isopropylacrylamide)-modified liposomes. J Control Release 59:63–75

    Article  CAS  Google Scholar 

  • Lambermont-Thijs HML, Heuts JPA, Hoeppener S, Hoogenboom R, Schubert US (2011) Selective partial hydrolysis of amphiphilic copoly(2-oxazoline)s as basis for temperature and pH responsive micelles. Polym Chem 2:313–322

    Article  CAS  Google Scholar 

  • Lattuada M, Wu H, Morbidelli M (2003a) A simple model for the structure of fractal aggregates. J Colloid Interface Sci 268(1):106–120

    Article  CAS  Google Scholar 

  • Lattuada M, Sandkühler P, Wu H, Sefcik J, Morbidelli M (2003b) Aggregation kinetics of polymer colloids in reaction limited regime: experiments and simulations. Adv Colloid Interface Sci 103(1):33–56

    Article  CAS  Google Scholar 

  • Liu Y, Tan J, Thomas A, Ou-Yang D, Muzykantov VR (2012) The shape of things to come: importance of design in nanotechnology for drug delivery. Ther Deliv 2:181–194

    Article  Google Scholar 

  • Longmire MR, Ogawa M, Choyke PL, Kobayashi H (2011) Biologically optimized nanosized molecules and particles: more than just size. Bioconjugate Chem 22(6):993–1000

    Article  CAS  Google Scholar 

  • Lúcio M, Bringezu F, Reis S, Lima JL, Brezesinski G (2008) Binding of nonsteroidal anti-inflammatory drugs to DPPC: structure and thermodynamic aspects. Langmuir 24(8):4132–4139

    Article  Google Scholar 

  • Luxenhofer R, Han Y, Schulz A, Tong J, He Z, Kabanov AV, Jordan R (2012) Poly(2-oxazoline)s as polymer therapeutics. Macromol Rapid Commun 33(19):1613–1631

    Article  CAS  Google Scholar 

  • Milonaki Y, Kaditi E, Pispas S, Demetzos C (2011) Amphiphilic gradinet copolymers of 2-methyl- and 2-phenyl-2-oxazoline: self-organization in aqueous media and drug encapsulation. J Polym Sci A 50(2011):1226

    Google Scholar 

  • Mishra B, Bhavesh B, Patel Tiwari S (2010) Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedecine 6:9–24

    Article  CAS  Google Scholar 

  • Moghimi SM, Szebeni J (2003) Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res 42(6):463–478

    Article  CAS  Google Scholar 

  • Mufamadi MS, Pillay V, Choonara YE, Du Toit LC, GirishModi G, Naidoo D, Ndesendo VMK (2011) A review on composite liposomal technologies for specialized drug delivery. J Drug Deliv 2011:939851–939870

    Article  Google Scholar 

  • New RRC (1990) Liposomes a practical approach. IRL/Oxford University Press, Oxford

    Google Scholar 

  • Nunes C, Brezesinski G, Pereira-Leite C, Lima JL, Reis S, Lúcio M (2011) NSAIDs interactions with membranes: a biophysical approach. Langmuir 27(17):10847–10858

    Article  CAS  Google Scholar 

  • Owens DE, Peppas NA (2006) Opsonization, biodistribution and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307(1):93–102

    Article  CAS  Google Scholar 

  • Papagiannaros A, Dimas K, Papaioannou GT, Demetzos C (2005) Doxorubicin-PAMAM dendrimers complec attached to liposomes: cytotoxic studies against human cancer cell lines. Int J Pharm 302(1–2):29–38

    Article  CAS  Google Scholar 

  • Pereira LM (2010) Fractal pharmacokinetics. Comput Math Methods Med 11(2):161–184

    Article  Google Scholar 

  • Pippa N, Pispas S, Demetzos C (2012a) The fractal hologram and elucidation of the structure of liposomal carriers in aqueous and biological media. Int J Pharm 430(1–2):65–73

    Article  CAS  Google Scholar 

  • Pippa N, Pispas S, Demetzos C (2012b) The delineation of the morphology of charged liposomal vectors via a fractal analysis in aqueous and biological media: physicochemical and self-assembly studies. Int J Pharm 437(1–2):264–274

    Article  CAS  Google Scholar 

  • Pispas S (2011a) Self-assembled nanostructures in mixed anionic-neutral double hydrophilic block copolymer/cationic vesicle–forming surfactant solutions. Soft Matter 7:474–482

    Article  CAS  Google Scholar 

  • Pispas S (2011b) Vesicular structures in mixed block copolymer/surfactant solutions. Soft Matter 7:8697–8701

    Article  CAS  Google Scholar 

  • Pispas S, Sarantopoulou E (2007) Self-assembly in mixed aqueous solutions of amphiphilic block copolymers and vesicle-forming surfactant. Langmuir 23:7484–7490

    Article  CAS  Google Scholar 

  • Roldán-Vargas S, Barnabas-Rodrígez R, Martín-Molina A, Quesada-Pérez M, Estelrich J, Callejas-Fernández J (2008) Growth of lipid vesicle structures: from surface fractals to mass fractals. Phys Rev E 78:010902

    Article  Google Scholar 

  • Roldán-Vargas S, Barnabas-Rodrígez R, Quesada-Pérez M, Estelrich J, Callejas-Fernández J (2009) Surface fractals in liposome aggregation. The American physical society. Phys Rev 79:1–14

    Google Scholar 

  • Rösler A, Vandermeulen GW, Klock HA (2001) Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv Drug Deliv 53(1):95–108

    Article  Google Scholar 

  • Sabín J, Prieto G, Ruso JM, Sarmiento F (2007a) Fractal aggregates induced by liposome- liposome interaction in the presence of Ca2+. Eur Phys J E 24:201–210

    Article  Google Scholar 

  • Sabín J, Prieto G, Ruso JM, Messina PV, Sarmiento F (2007b) Aggregation of liposomes in presence of La3+: a study of the fractal dimension. Phys Rev E 76(011408):1–7

    Google Scholar 

  • Schlaad H, Diehl C, Gress A, Meyer M, Demirel AL, Nur Y, Bertin (2010) Poly(2-oxazoline)s as smart bioinspired polymers. Macromol Rapid Commun 31(6):511–521

    Article  CAS  Google Scholar 

  • Sedlacek O, Monnery BD, Filippov SK, Hoogenboom R, Hruby M (2012) Poly(2-oxazoline)s–are they more advantageous for biomedical applications than other polymers? Macromol Rapid Commun 33(19):1648–1662

    Article  CAS  Google Scholar 

  • Shimanouchi T, Sasaki M, Hiroiwa A, Yoshimoto N, Miyagawa K, Umakoshim H, Kuboi R (2011) Relationship between the mobility of phosphocholine headgroups of liposomes and the hydrophobicity at the membrane interface: a characterization with spectrophotometric measurements. Colloids Surf B 88:221–230

    Article  CAS  Google Scholar 

  • Sugihara H, Yamamoto H, Kawashima Y, Takeuchi H (2012) Effectiveness of submicronized chitosan-coated liposomes in oral absorption of indomethacin. J Liposome Res 22(1):72–79

    Article  CAS  Google Scholar 

  • Taubert A, Napoli A, Meier W (2004) Self-assembly of reactive amphiphilic block copolymers as mimetics for biological membranes. Cur Opin Chem Biol 8(6):598–603

    Article  CAS  Google Scholar 

  • Vial F, Tribet C (2008) Flexible macromolecules attached to lipid blayers: impact on fluidity, curvature, permeability and stability of the membranes. Soft Matter 4:68–81

    Article  Google Scholar 

  • Woodle MC, Engbers CM, Zalipsky S (1994) New amphipatic polymer-lipid conjugates forming long-circulating reticuloendthelial system-evading liposomes. Bioconjugate Chem 5(6):493–496

    Article  CAS  Google Scholar 

  • Xiong XB, Falamarzian A, Garg SM, Lavasanifar A (2011) Engineering of amphiphilic block copolymers for polymeric micellar drug and gene delivery. J Control Release 155(2):248–261

    Article  CAS  Google Scholar 

  • Zalipsky S, Hansen CM, Oaks JM, Allen TM (1996) Evaluation of blood clearance and biodistribution of poly(2-oxazoline)-grafted liposomes. J Pharm Sci 85(2):133–137

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costas Demetzos.

Additional information

Stergios Pispas and Costas Demetzos contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 107 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pippa, N., Kaditi, E., Pispas, S. et al. DPPC/poly(2-methyl-2-oxazoline)-grad-poly(2-phenyl-2-oxazoline) chimeric nanostructures as potential drug nanocarriers. J Nanopart Res 15, 1685 (2013). https://doi.org/10.1007/s11051-013-1685-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1685-3

Keywords

Navigation