Skip to main content
Log in

A Promising Combo Gene Delivery System Developed from (3-Aminopropyl)triethoxysilane-Modified Iron Oxide Nanoparticles and Cationic Polymers

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

(3-Aminopropyl)triethoxysilane-modified iron oxide nanoparticles (APTES-IONPs) have been evaluated for various biomedical applications, including medical imaging and drug delivery. Cationic polymers (CPs) such as Lipofectamine and TurboFect are widely used for research in gene delivery, but their toxicity and low in vivo efficiency limited their further application. In the present study, we synthesized water-soluble APTES-IONPs and developed a combo gene delivery system based on APTES-IONPs and CPs. This system significantly increased gene-binding capacity, protected genes from degradation, and improved gene transfection efficiency for DNA and siRNA in both adherent and suspension cells. Because of its great biocompatibility, high gene-carrying ability, and very low cytotoxicity, this combo gene delivery system will be expected for a wide application, and it might provide a new method for gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arsianti M, Lim M, Marquis CP, Amal R (2010) Assembly of polyethylenimine-based magnetic iron oxide vectors: insights into gene delivery. Langmuir 26(10):7314–7326

    Article  CAS  Google Scholar 

  • Cheang TY, Tang B, Xu AW, Chang GQ, Hu ZJ, He WL, Xing ZH, Xu JB, Wang M, Wang SM (2011) Promising plasmid DNA vector based on APTES-modified silica nanoparticles. Int J Nanomedicine 7:1061–1067

    Google Scholar 

  • Fang C, Veiseh O, Kievit F, Bhattarai N, Wang F, Stephen Z, Li C, Lee D, Ellenbogen RG, Zhang M (2010) Functionalization of iron oxide magnetic nanoparticles with targeting ligands: their physicochemical properties and in vivo behavior. Nanomedicine 5(9):1357–1369

    Article  CAS  Google Scholar 

  • Gan S, Yang P, Yang W (2009) Photoactivation of alkyl C–H and silanization: a simple and general route to prepare high-density primary amines on inert polymer surfaces for protein immobilization. Biomacromolecules 10(5):1238–1243

    Article  CAS  Google Scholar 

  • Ghosh R, Singh LC, Shohet JM, Gunaratne PH (2013) A gold nanoparticle platform for the delivery of functional microRNAs into cancer cells. Biomaterials 34(3):807–816

    Article  CAS  Google Scholar 

  • Jahn MR, Shukoor I, Tremel W, Wolfrum U, Kolb U, Nawroth T, Langguth P (2011) Hemin-coupled iron(III)-hydroxide nanoparticles show increased uptake in Caco-2 cells. J Pharm Pharmacol 63(12):1522–1530

    Article  CAS  Google Scholar 

  • Kievit FM, Zhang M (2011) Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Acc Chem Res 44(10):853–862

    Article  CAS  Google Scholar 

  • Kievit FM, Veiseh O, Bhattarai N, Fang C, Gunn JW, Lee D, Ellenbogen RG, Olson JM, Zhang M (2009) PEI-PEG-chitosan copolymer coated iron oxide nanoparticles for safe gene delivery: synthesis, complexation, and transfection. Adv Funct Mater 19(14):2244–2251

    Article  CAS  Google Scholar 

  • Ling D, Hyeon T (2012) Chemical design of biocompatible iron oxide nanoparticles for medical applications. Small. doi: 10.1002/smll.201202111

  • Ma M, Zhang Y, Yu W, Shen H, Zhang H, Gu N (2003) Preparation and characterization of magnetite nanoparticles coated by amino silane. Colloid Surf A 212:219–226

    Article  CAS  Google Scholar 

  • Maeda H, Kasuga T, Hench LL (2006) Preparation of poly(l-lactic acid)-polysiloxane-calcium carbonate hybrid membranes for guided bone regeneration. Biomaterials 27(8):1216–1222

    Article  CAS  Google Scholar 

  • Mao X, Cao B, Wood TE, Hurren R, Tong J, Wang X, Wang W, Li J, Jin Y, Sun W, Spagnuolo PA, MacLean N, Moran MF, Datti A, Wrana J, Batey RA, Schimmer AD (2011) A small-molecule inhibitor of d-cyclin transactivation displays preclinical efficacy in myeloma and leukemia via phosphoinositide 3-kinase pathway. Blood 117(6):1986–1997

    Article  CAS  Google Scholar 

  • Mehier-Humbert S, Bettinger T, Yan F, Guy RH (2005) Ultrasound-mediated gene delivery: kinetics of plasmid internalization and gene expression. J Control Release 104(1):203–211

    Article  CAS  Google Scholar 

  • Meng Lin M, Kim HH, Kim H, Muhammed M, Kyung Kim D (2010) Iron oxide-based nanomagnets in nanomedicine: fabrication and applications. Nano Rev 1. doi:10.3402/nano.v1i0.4883

  • Natarajan A, Chun C, Hickman JJ, Molnar P (2008) Growth and electrophysiological properties of rat embryonic cardiomyocytes on hydroxyl- and carboxyl-modified surfaces. J Biomater Sci 19(10):1319–1331

    Article  CAS  Google Scholar 

  • Nguyen TH, Kim YU, Kim KJ, Choi SS (2009) Investigation of structural transition of dsDNA on various substrates studied by atomic force microscopy. J Nanosci Nanotechnol 9(3):2162–2168

    Article  CAS  Google Scholar 

  • Sahoo SK, Labhasetwar V (2003) Nanotech approaches to drug delivery and imaging. Drug Discov Today 8(24):1112–1120

    Article  CAS  Google Scholar 

  • Samal SK, Dash M, Van Vlierberghe S, Kaplan DL, Chiellini E, van Blitterswijk C, Moroni L, Dubruel P (2012) Cationic polymers and their therapeutic potential. Chem Society Res 41(21):7147–7194

    Article  CAS  Google Scholar 

  • Singh KK (2005) Nanotechnology in cancer detection and treatment. Technol Cancer Res Treat 4(6):583

    Google Scholar 

  • Sun SL, Lo YL, Chen HY, Wang LF (2012) Hybrid polyethylenimine and polyacrylic acid-bound iron oxide as a magnetoplex for gene delivery. Langmuir 28(7):3542–3552

    Article  CAS  Google Scholar 

  • Tietze R, Lyer S, Durr S, Alexiou C (2012) Nanoparticles for cancer therapy using magnetic forces. Nanomedicine 7(3):447–457

    Article  CAS  Google Scholar 

  • Vergaro V, Abdullayev E, Lvov YM, Zeitoun A, Cingolani R, Rinaldi R, Leporatti S (2010) Cytocompatibility and uptake of halloysite clay nanotubes. Biomacromolecules 11(3):820–826

    Article  CAS  Google Scholar 

  • Wang S, Wen S, Shen M, Guo R, Cao X, Wang J, Shi X (2011) Aminopropyltriethoxysilane-mediated surface functionalization of hydroxyapatite nanoparticles: synthesis, characterization, and in vitro toxicity assay. Int J Nanomedicine 6:3449–3459

    CAS  Google Scholar 

  • Wiekhorst F, Steinhoff U, Eberbeck D, Trahms L (2012) Magnetorelaxometry assisting biomedical applications of magnetic nanoparticles. Pharm Res 29(5):1189–1202

    Article  CAS  Google Scholar 

  • Xu L, Kim M, Kim K, Choa Y, Kim H (2009) Surface modified Fe3O4 nanoparticles as a protein delivery vehicle. Colloid Surf A 350:8–12

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Basic Research Program of China (Program “973”, 2011CB933501), by the National Natural Science Foundation of China (Grants No. 81071935, 81272632, 81101795), by the Natural Science Foundation of Jiangsu Province (Grants No. BK2010218, BK2011268), and by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinliang Mao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Song, L., Dong, J. et al. A Promising Combo Gene Delivery System Developed from (3-Aminopropyl)triethoxysilane-Modified Iron Oxide Nanoparticles and Cationic Polymers. J Nanopart Res 15, 1659 (2013). https://doi.org/10.1007/s11051-013-1659-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1659-5

Keywords

Navigation