Skip to main content

Advertisement

Log in

Ion beam irradiation-induced tuning of SPR of Au nanoparticles in fullerene C70 matrix: dependence of energy loss

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We investigated the effect of energy loss of ions on the ion irradiation-induced tuning of surface plasmon resonance (SPR) wavelength of Au nanoparticles (NPs) in fullerene C70 matrix. The transformation of fullerene C70 into amorphous carbon (a-C) under ion irradiation was used to tune the SPR wavelength of Au–C70 nanocomposite thin films. It is found that the range of tuning of SPR wavelength increases with increase in electronic energy loss of the incoming beam. The growth of Au NPs with increasing fluence was observed in all the cases and total growth is proportional to the electronic energy loss. The average diameter of Au NPs in pristine film is ~4.8 nm and a maximum growth of ~3 nm was observed at a fluence of 3 × 1013 ions/cm2, when the film was irradiated with 120 MeV Ag ions. It was also observed that nuclear energy loss via collision cascades has lower efficiency for SPR tuning in comparison with the electronic excitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bajwa N, Ingale A, Avasthi DK, Kumar R, Tripathi A, Dharamvir K, Jindal VK (2008) Role of electron energy loss in modification of C60 thin films by swift heavy ions. J Appl Phys 104:054306 (13 pp). doi:10.1063/1.2968340

    Google Scholar 

  • Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830. doi:10.1038/nature01937

    Article  CAS  Google Scholar 

  • Dufour CH, Paumeir E, Toluemonde M (1994) Electron phonon coupling and the sensitivity of metals to irradiation with swift heavy ions. Nuclear Instrum Methods Phys Res B 122:445–448. doi:10.1016/S0168-583X(96)00659-3

    Article  Google Scholar 

  • Dupas C, Houdy P, Lahmani M (2006) Nanosciences, nanotechnologies and nanophysics. Springer, New York

    Google Scholar 

  • Ferrai AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61:14095–14107. doi:10.1103/PhysRevB.61.14095

    Article  Google Scholar 

  • Ferrari AC, Robertson J (2001) Resonant Raman spectroscopy of disordered, amorphous, and diamond like carbon. Phys Rev B 64:075414 (13 pp). doi:10.1103/PhysRevB.64.075414

    Google Scholar 

  • Fink D, Klett R, Szimkovick P, Kastner J, Palmetshofer L, Chadderton LT, Wang L, Kuzmany H (1996a) Ion beam radiation damage of thin fullerene films. Nuclear Instrum Methods Phys Res B 108:114–124. doi:10.1016/0168-583X(95)00868-3

    Article  CAS  Google Scholar 

  • Fink D, Chadderton LT, Vacik J, Hnatowicz V, Zawislak FC, Behar M, Grande PL (1996b) Damage and sputtering of fullerene by low energy medium and heavy ions. Nuclear Instrum Methods Phys Res B 113:244–247. doi:10.1016/0168-583X(95)01391-1

    Article  CAS  Google Scholar 

  • Kastner J, Kuzmany H, Palmetshofer L (1994) Damage and polymerization by ion bombardment of C60. Appl Phys Lett 65:543(3 pp). doi:10.1063/1.112954

    Google Scholar 

  • Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer Series in Materials Science, Springer, Berlin 25

    Book  Google Scholar 

  • Krenn JR (2003) Nanoparticle waveguides: watching energy transfer. Nat Mater 2(210):211. doi:10.1038/nmat865

    Google Scholar 

  • Maier SA, Kik PG, Atwater HA, Meltzer S, Harel E, Koel B, Requicha AAG (2003) Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater 2:229–232. doi:10.1038/nmat852

    Article  CAS  Google Scholar 

  • Mishra S, Ingale A, Ghosh S, Avasthi DK (2005) Swift heavy ion (150 MeV: Ag13+) induced structural changes in a-C:H films studied by Raman spectroscopy. Diam Relat Mater 14:1416–1425. doi:10.1016/j.diamond.2005.02.005

    Article  CAS  Google Scholar 

  • Mishra YK, Mohapatra S, Singhal R, Avasthi DK, Agarwal DC, Ogale SB (2008) Au–ZnO: a tunable localized surface plasmonic nanocomposite. Appl Phys Lett 92:043107 (3 pp). doi:10.1063/1.2838302

    Google Scholar 

  • Mohapatra S, Mishra YK, Avasthi DK, Kabiraj D, Ghatak J, Verma S (2008) Synthesis of gold–silicon core–shell nanoparticles with tunable localized surface plasmon resonance. Appl Phys Lett 92:103105 (3 pp). doi:10.1063/1.2894187

    Google Scholar 

  • Papavassiliou GC (1976) Surface plasmons in small Au–Ag alloy particles. J Phys F Metal Phys 6:L103–L105. doi:10.1088/0305-4608/6/4/004

    Article  CAS  Google Scholar 

  • Prawer S, Kalish R, Adel M, Richter V (1987) Effects of heavy ion irradiation on amorphous hydrogenated (diamond like) carbon films. J Appl Phys 61:4492 (9 pp). doi:10.1063/1.338410

    Google Scholar 

  • Prawer S, Nugent KW, Biggs S, McCulloch DC, Lcang WH, Hoffman A, Kalish R (1995) Ion-beam modification of fullerene. Phys Rev B 52:841–849. doi:10.1103/PhysRevB.52.841

    Article  CAS  Google Scholar 

  • Robertson J (1992) Mechanical properties and coordinations of amorphous carbons. Phys Rev Lett 68:220–223. doi:10.1103/PhysRevLett.68.220

    Article  CAS  Google Scholar 

  • Robertson J, O’Reilly EP (1987) Electronic and atomic structure of amorphous carbon. Phys Rev B 35:2946–2957. doi:10.1103/PhysRevB.35.2946

    Google Scholar 

  • Roy RK, Mandal SK, Pal AK (2003) Effect of interfacial alloying on the surface plasmon resonance of nanocrystalline Au–Ag multilayer thin films. Eur Phys J B 33:109–114. doi:10.1140/epjb/e2003-00147-x

    Article  CAS  Google Scholar 

  • Salis SR, Gardiner DJ, Bowden M, Savage J, Rodway D (1996) Monitoring the quality of diamond films using Raman spectra excited at 514.5 and 633 nm. Diam Relat Mater 5:589–591. doi:10.1016/0925-9635(96)90031-X

    Article  Google Scholar 

  • Singhal R, Kumar A, Mishra YK, Mohapatra S, Pivin JC, Avasthi DK (2008) Swift heavy ion induced modifications of fullerene C70 thin films. Nuclear Instrum Methods Phys Res B 266:3257–3262. doi:10.1016/j.nimb.2008.04.003

    Article  CAS  Google Scholar 

  • Singhal R, Agarwal DC, Mishra YK, Mohapatra S, Avasthi DK, Chawla AK, Chandra R, Pivin JC (2009a) Swift heavy ion induced modifications of optical and microstructural properties of silver–fullerene C60 nanocomposite. Nuclear Instrum Methods Phys Res B 267:1349–1352. doi:10.1016/j.nimb.2009.01.044

    Article  CAS  Google Scholar 

  • Singhal R, Agarwal DC, Mishra YK, Singh F, Pivin JC, Chandra R Avasthi DK (2009b) Electronic excitation induced tuning of surface plasmon resonance of Ag nanoparticles in fullerene C70 matrix. J Phys D Appl Phys. 42:155103 (7 pp). doi:10.1088/0022-3727/42/15/155103

    Google Scholar 

  • Singhal R, Singh F, Tripathi A, Avasthi DK (2009c) A comparative study of ion-induced damages in C60 and C70 fullerenes. Radiat Eff Def Solids 164:38–48. doi:10.1080/10420150802479638

    Article  CAS  Google Scholar 

  • Takele H, Greve H, Pochstein C, Zaporojtchenko V, Faupel F (2006) Plasmonic properties of Ag nanoclusters in various polymer matrices. Nanotechnology 17:3499–3505. doi:10.1088/0957-4484/17/14/023

    Article  CAS  Google Scholar 

  • Wiederrecht GP (2004) Near-field optical imaging of noble metal nanoparticles. Eur Phys J Appl Phys 28:3–18. doi:10.1051/epjap:2004170

    Article  CAS  Google Scholar 

  • Xu G, Tazawa M, Jin P, Nakao S (2005) Surface plasmon resonance of sputtered Ag films: substrate and mass thickness dependence. Appl Phys A 80:1535–1540. doi:10.1007/s00339-003-2395-y

    Article  CAS  Google Scholar 

  • Zeigler JF, Biersack JP, Littmark V (1985) The stopping and range of ions in solids. Pergamon, New York

    Google Scholar 

  • Zhou Li, Xue-Feng YU, Xiao-Feng FU, Zhong-Hua HAO, Kai-Yang LI (2008) Surface plasmon resonance and field enhancement of Au/Ag alloyed hollow nanoshells. Chin Phys Lett 25:1776–1779. doi:EN/Y2008/V25/I5/1776

    Article  Google Scholar 

Download references

Acknowledgments

The author (R. Singhal) is thankful to IUAC Pelletron group for providing stable ion beam. Author is also thankful to Dr. D. Kanjilal and Dr. P. Kumar, IUAC New Delhi for providing low energy ion beam facility (LEIBF). The help and support by Dr. D. Kabiraj, Dr. D. C. Agarwal, Dr. F. Singh, Mr. P. Kulriya of IUAC New Delhi for the synthesis and characterizations of Au-C70 nanocomposite films is highly acknowledged. Department of Science and Technology New Delhi (DST), India is also acknowledged for providing experimental characterization facilities through “Nanomission” and “IRHPA” projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Singhal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singhal, R., Pivin, J.C. & Avasthi, D.K. Ion beam irradiation-induced tuning of SPR of Au nanoparticles in fullerene C70 matrix: dependence of energy loss. J Nanopart Res 15, 1641 (2013). https://doi.org/10.1007/s11051-013-1641-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1641-2

Keywords

Navigation